
Dynamic Enforcement of Knowledge-based
Security Policies using Probabilistic Abstract

Interpretation

Piotr Mardziel†, Stephen Magill, Michael Hicks†, Mudhakar Srivatsa?

† University of Maryland, College Park
? IBM T.J. Watson Research Laboratory

January 24, 2013

Abstract

This paper explores the idea of knowledge-based security policies, which are
used to decide whether to answer queries over secret data based on an estima-
tion of the querier’s (possibly increased) knowledge given the results. Limiting
knowledge is the goal of existing information release policies that employ mech-
anisms such as noising, anonymization, and redaction. Knowledge-based policies
are more general: they increase flexibility by not fixing the means to restrict infor-
mation flow. We enforce a knowledge-based policy by explicitly tracking a model
of a querier’s belief about secret data, represented as a probability distribution, and
denying any query that could increase knowledge above a given threshold. We im-
plement query analysis and belief tracking via abstract interpretation, which allows
us to trade off precision and performance through the use of abstraction. We have
developed an approach to augment standard abstract domains to include probabili-
ties, and thus define distributions. We focus on developing probabilistic polyhedra
in particular, to support numeric programs. While probabilistic abstract interpre-
tation has been considered before, our domain is the first whose design supports
sound conditioning, which is required to ensure that estimates of a querier’s knowl-
edge are accurate. Experiments with our implementation show that several useful
queries can be handled efficiently, particularly compared to exact (i.e., sound) in-
ference involving sampling. We also show that, for our benchmarks, restricting
constraints to octagons or intervals, rather than full polyhedra, can dramatically
improve performance while incurring little to no loss in precision.

1 Introduction
Facebook, Twitter, Flickr, and other successful on-line services enable users to easily
foster and maintain relationships by sharing information with friends and fans. These
services store users’ personal information and use it to customize the user experience
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and to generate revenue. For example, Facebook third-party applications are granted
access to a user’s “basic” data (which includes name, profile picture, gender, networks,
user ID, and list of friends [5]) to implement services like birthday announcements and
horoscopes, while Facebook selects ads based on age, gender, and even sexual pref-
erence [27]. Unfortunately, once personal information is collected, users have limited
control over how it is used. For example, Facebook’s EULA grants Facebook a non-
exclusive license to any content a user posts [2]. MySpace, another social network site,
has begun to sell its users’ data [56].

Some researchers have proposed that, to keep tighter control over their data, users
could use a storage server (e.g., running on their home network) that handles personal
data requests, and only responds when a request is deemed safe [50, 8]. The question
is: which requests are safe? While deferring to user-defined access control policies
seems an obvious approach, such policies are unnecessarily restrictive when the goal
is to maximize the customized personal experience. To see why, consider two exam-
ple applications: a horoscope or “happy birthday” application that operates on birth
month and day, and a music recommendation algorithm that considers birth year (age).
Access control at the granularity of the entire birth date could preclude both of these
applications, while choosing only to release birth year or birth day precludes access
to one application or the other. But in fact the user may not care much about these
particular bits of information, but rather about what can be deduced from them. For
example, it has been reported that zip code, birth date, and gender are sufficient infor-
mation to uniquely identify 87% of Americans in the 1990 U.S. census [55] and 63%
in the 2000 census [25]. So the user may be perfectly happy to reveal any one of these
bits of information as long as a querier gains no better than a 1/n chance to guess the
entire group, for some parameter n.

This paper explores the design and implementation for enforcing what we call
knowledge-based security policies. In our model, a user U ’s agent responds to queries
involving secret data. For each querying principal Q, the agent maintains a probability
distribution over U ’s secret data, representing Q’s belief of the data’s likely values.
For example, to mediate queries from a social networking site X , user U ’s agent may
model X’s otherwise uninformed knowledge of U ’s birthday according to a likely de-
mographic: the birth month and day are uniformly distributed, while the birth year is
most likely between 1956 and 1992 [1]. Each querier Q is also assigned a knowledge-
based policy, expressed as a set of thresholds, each applying to a different group of
(potentially overlapping) data. For example, U ’s policy for X might be a threshold of
1/100 for the entire tuple (birthdate, zipcode, gender), and 1/5 for just birth date. U ’s
agent refuses any queries that it determines could increase Q’s ability to guess a secret
above the assigned threshold. If deemed safe, U ’s agent returns the query’s (exact)
result and updates Q’s modeled belief appropriately.

Throughout the paper we use users’ personal information protection when interact-
ing with services like Facebook (or its advertisers) as a running example, but knowledge-
based security policies have other applications as well. For example, they can be used
to decide whether a principal should participate in a secure multiparty computation in-
volving multiple principals each with its own secrets, such as their current location
or available resources. We have explored this application in some detail in recent
work [34]. Knowledge-based policies could also be used to protect against browser
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fingerprinting, which aims to uniquely identify individuals based on environmental in-
dicators visible to Javascript programs [10]. Users could set a threshold policy over
the tuple of the most sensitive indicators, and prevent the execution of the Javascript
program (or execute only a modified version) if the threshold is exceeded. Another
example would be application to privacy-preserving smart metering [49]. Here, the
proposal is that rather than report fine-grained power usage information back to the
power company, which could compromise privacy, the pricing algorithm is run locally
on the meter, with only the final charge returned. Our work could be combined with this
work to ensure that knowledge that can be inferred from the output indeed preserves
privacy sufficiently. We elaborate on these and other examples in Section 8.

To implement our model, we need (1) an algorithm to check whether answering
a query could violate a knowledge-based policy, (2) a method for revising a querier’s
belief according to the answer that is given, and (3) means to implement (1) and (2)
efficiently. We build on the work of Clarkson et al. [14] (reviewed in Section 3), which
works out the theoretical basis for (2). The main contributions of this paper, therefore,
in addition to the idea of knowledge-based policies, are our solutions to (1) and (3).

Given a means to revise querier beliefs based on prior answers, it seems obvious
how to check that a query does not reveal too much: U runs the query, tentatively
revisesQ’s belief based on the result, and then responds with the answer only ifQ’s re-
vised belief about the secrets does not exceed the prescribed thresholds. Unfortunately,
with this approach the decision to accept or reject depends on the actual secret, so a re-
jection could leak information. We give an example in the next section that shows how
the entire secret could be revealed. Therefore, we propose that a query should be re-
jected if there exists any possible secret value that could induce an output whereby the
revised belief would exceed the threshold. This idea is described in detail in Section 4.

The foundational elements of our approach, belief tracking and revision, can be
implemented using languages for probabilistic computation. However, existing lan-
guages of this variety—IBAL [45], Church [26], Fun [11], and several other sys-
tems [47, 44, 30, 38]— are problematic because they are either unsound or too in-
efficient. Systems that use exact inference have no flexibility of approximation to effi-
ciently handle large or complex state spaces. Systems that use approximate inference
are more efficient, but the nature of the approximation is under-specified, and thus there
is no guarantee of soundness.

We have developed an implementation based on abstract interpretation [17] that is
capable of approximate inference, but is sound relative to our policies. In particular,
our implementation ensures that, despite the use of abstraction, the probabilities we as-
cribe to the querier’s belief are never less than the true probabilities. At the center of our
implementation is a new abstract domain we call a probabilistic polyhedra, described
in Section 5, which extends the standard convex polyhedron abstract domain [19] with
measures of probability. We represent beliefs as a set of probabilistic polyhedra (as de-
veloped in Section 6). Our approach can easily be adapted to any abstract domain that
supports certain common operations; our implementation includes support for intervals
[16] and octagons [39].

While some prior work has explored probabilistic abstract interpretation [40], this
work does not support belief revision, which is required to track how observation of
outputs affects a querier’s belief. Support for revision requires that we maintain both
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under- and over-approximations of probabilities in the querier’s belief, whereas prior
work deals only with over-approximation. We have developed an implementation of
our approach based on Parma [6], an abstract interpretation library, and LattE [21], a
tool for counting the integer points contained in a polygon. We discuss the implementa-
tion in Section 7 along with some experimental measurements of its performance. We
find that the varying the number of polyhedra permitted for performing belief tracking
constitutes a useful precision/performance tradeoff, and that reasonable performance
can be had while maintaining good precision.

Knowledge-based policies aim to ensure that an attacker’s knowledge of a secret
does not increase much when learning the result of a query. Much prior work aims to
enforce similar properties by tracking information leakage quantitatively [37, 53, 7, 32,
48]. Our approach is more precise (but also more resource-intensive) because it main-
tains an on-line model of adversary knowledge. An alternative to knowledge-based
privacy is differential privacy [24] (DP), which requires that a query over a database
of individuals’ records produces roughly the same answer whether a particular indi-
vidual’s data is in the database or not—the possible knowledge of the querier, and the
impact of the query’s result on it, need not be directly considered. As such, DP avoids
the danger of mismodeling a querier’s knowledge and as a result inappropriately re-
leasing information. DP also need not maintain a per-querier belief representation for
answering subsequent queries. However, DP applies once an individual has released
his personal data to a trusted third party’s database, a release we are motivated to avoid.
Moreover, applying DP to queries over an individual’s data, rather than a population,
introduces so much noise that the results are often useless. We discuss these issues
along with other related work in Section 9.

A preliminary version of this paper was published at CSF’11 [35]. The present
version expands the formal description of probabilistic polyhedra and details of their
implementation, and expands our experimental evaluation. We have refined some defi-
nitions to improve performance (e.g., the forget operation in Section 5.3.1) and imple-
mented two new abstract domains (Section 5.5). We have also expanded our bench-
mark suite to include several additional programs (Section 7.1 and Appendix A). We
discuss the performance/precision tradeoffs across the different domains/benchmarks
(Section 7.3). Proofs, omitted for space reasons, appear in a companion technical re-
port [36].

2 Overview
The next section presents a technical overview of the paper through a running example.
Full details of the approach are presented in Sections 3–7.

Knowledge-based policies and beliefs. User Bob would like to enforce a knowledge-
based policy on his data so that advertisers do not learn too much about him. Suppose
Bob considers his birthday of September 27, 1980 to be relatively private; variable
bday stores the calendar day (a number between 0 and 364, which for Bob would be
270) and byear stores the birth year (which would be 1980). To bday he assigns a
knowledge threshold td = 0.2 stating that he does not want an advertiser to have better
than a 20% likelihood of guessing his birth day. To the pair (bday , byear) he assigns a
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threshold tdy = 0.05, meaning he does not want an advertiser to be able to guess the
combination of birth day and year together with better than a 5% likelihood.

Bob runs an agent program to answer queries about his data on his behalf. This
agent models an estimated belief of queriers as a probability distribution δ, which is
conceptually a map from secret states to positive real numbers representing probabil-
ities (in range [0, 1]). Bob’s secret state is the pair (bday = 270, byear = 1980). The
agent represents a distribution as a set of probabilistic polyhedra. For now, we can
think of a probabilistic polyhedron as a standard convex polyhedron C with a proba-
bility mass m, where the probability of each integer point contained in C is m/#(C),
where #(C) is the number of integer points contained in the polyhedron C. Shortly
we present a more involved representation.

Initially, the agent might model an advertiser X’s belief using the following rect-
angular polyhedron C, where each point contained in it is considered equally likely
(m = 1):

C = 0 ≤ bday < 365, 1956 ≤ byear < 1993

An initial belief such as this one could be derived from several sources. For exam-
ple, Facebook publishes demographics of its users [1], and similar sorts of personal
demographics could be drawn from census data, surveys, employee records, etc. De-
mographics are also relevant to other applications; e.g., initial beliefs for hiding web
browser footprints can be based on browser surveys, likely movie preferences can be
found from IMDB, and so on. In general, we observe that understanding the capabili-
ties and knowledge of a potential adversary is necessary no matter the kind of security
policy used; often this determination is implicit, rather than explicit as in our approach.
We defer further discussion on this topic to Sections 9 and 8.

Enforcing knowledge-based policies safely. Suppose X wants to identify users
whose birthday falls within the next week, to promote a special offer. X sends Bob’s
agent the following program.

Example 1.
today := 260;
if bday ≥ today ∧ bday < (today + 7) then
output := True;

This program refers to Bob’s secret variable bday , and also uses non-secret variables
today , which represents the current day and is here set to be 260, and output , which
is set to True if the user’s birthday is within the next seven days (we assume output is
initially False).

The agent must decide whether returning the result of running this program will
potentially increase X’s knowledge about Bob’s data above the prescribed threshold.
We explain how it makes this determination shortly, but for the present we can see
that answering the query is safe: the returned output variable will be False which
essentially teaches the querier that Bob’s birthday is not within the next week, which
still leaves many possibilities. As such, the agent revises his model of the querier’s
belief to be the following pair of rectangular polyhedra C1, C2, where again all points
in each are equally likely (with probability masses m1 = 260

358 ≈ 0.726,m2 = 98
358 ≈
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0.274):
C1 = 0 ≤ bday < 260, 1956 ≤ byear < 1993
C2 = 267 ≤ bday < 365, 1956 ≤ byear < 1993

Ignoring byear , there are 358 possible values for bday and each is equally likely. Thus
the probability of any one is 1/358 ≈ 0.0028 ≤ td = 0.2. More explicitly, the same
quantity can be computed using the definition of conditional probability: Pr(A|B) =
Pr(A ∧ B)/Pr(B) where event A refers to bday having one particular value (e.g.,
not in the next week) and event B refers to the query returning False. Thus 1/358 =

1
365/

358
365 .

Suppose the next day the same advertiser sends the same program to Bob’s user
agent, but with today set to 261. Should the agent run the program? At first glance,
doing so seems OK. The program will return False, and the revised belief will be the
same as above but with constraint bday ≥ 267 changed to bday ≥ 268, meaning there
is still only a 1/357 ≈ 0.0028 chance to guess bday .

But suppose Bob’s birth day was actually 267, rather than 270. The first query
would have produced the same revised belief as before, but since the second query
would return True (since bday = 267 < (261 + 7)), the querier can deduce Bob’s
birth day exactly: bday ≥ 267 (from the first query) and bday < 268 (from the second
query) together imply that bday = 267! But the user agent is now stuck: it cannot
simply refuse to answer the query, because the querier knows that with td = 0.2 (or
indeed, any reasonable threshold) the only good reason to refuse is when bday = 267.
As such, refusal essentially tells the querier the answer.

The lesson is that the decision to refuse a query must not be based on the effect of
running the query on the actual secret, because then a refusal could leak information. In
Section 4 we propose that an agent should reject a program if there exists any possible
secret that could cause a program answer to increase querier knowledge above the
threshold. As such we would reject the second query regardless of whether bday = 270
or bday = 267. This makes the policy decision simulatable [29]: given knowledge of
the current belief model and the belief-tracking implementation being used, the querier
can determine whether his query will be rejected on his own.

Full probabilistic polyhedra. Now suppose, having run the first query and rejected
the second, the user agent receives the following program from X .

Example 2.

age := 2011− byear ;
if age = 20 ∨ age = 30 ∨ ... ∨ age = 60 then output := True;
pif 0.1 then output := True;

This program attempts to discover whether this year is a “special” year for the given
user, who thus deserves a special offer. The program returns True if either the user’s
age is (or will be) an exact decade, or if the user wins the luck of the draw (one chance
in ten), as implemented by the probabilistic if statement.

Running this program reveals nothing about bday , but does reveal something about
byear . In particular, if output = False then the querier knows that byear 6∈ {1991,
1981, 1971, 1961}, but all other years are equally likely. We could represent this new
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Figure 1: Example 2: most precise revised beliefs

knowledge, combined with the knowledge gained from the first query, as shown in
Figure 1(a), where each shaded box is a polyhedron containing equally likely points.
On the other hand, if output = True then either byear ∈ {1991, 1981, 1971, 1961}
or the user got lucky. We represent the querier’s knowledge in this case as in Fig-
ure 1(b). Darker shading indicates higher probability; thus, all years are still pos-
sible, though some are much more likely than others. With the given threshold of
tdy = 0.05, the agent will permit the query; when output = False, the likelihood
of any point in the shaded region is

(
9
10 ∗

1
37∗358

)
/
(

9
10 ∗

33
37

)
= 1/(33 ∗ 358); when

output = True, the points in the dark bands are the most likely, with probability(
1

37∗358

)
/
(

9
10 ∗

4
37 + 1

10

)
= 10/(73 ∗ 358) (this and the previous calculation are also

just instantiations of the definition of conditional probability). Since both outcomes are
possible with Bob’s byear = 1980, the revised belief will depend on the result of the
probabilistic if statement.

This example illustrates a potential problem with the simple representation of prob-
abilistic polyhedra mentioned earlier: when output = False we will jump from using
two probabilistic polyhedra to ten, and when output = True we jump to using eigh-
teen. Allowing the number of polyhedra to grow without bound will result in per-
formance problems. To address this concern, we need a way to abstract our belief
representation to be more concise.

Section 5 shows how to represent a probabilistic polyhedron P as a seven-tuple,
(C, smin, smax,pmin,pmax,mmin,mmax) where smin and smax are lower and upper
bounds on the number of points with non-zero probability in the polyhedron C (called
the support points of C); the quantities pmin and pmax are lower and upper bounds
on the probability mass per support point; and mmin and mmax give bounds on the
total probability mass. Thus, polyhedra modeled using the simpler representation
(C,m) given earlier are equivalent to ones in the more involved representation with
mmax = mmin = m, pmax = pmin = m/#(C), and smax = smin = #(C).

With the seven-tuple representation, we could choose to collapse the sets of polyhe-
dra given in Figure 1. For example, we could represent Figure 1(a) with two probabilis-
tic polyhedra P1 and P2 containing polyhedra C1 and C2 defined above, respectively,
essentially drawing a box around the two groupings of smaller boxes in the figure. The
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other parameters for P1 would be as follows (explained below):

pmin
1 = pmax

1 = 9/135050 = 1
37∗365 ∗

9
10

smin
1 = smax

1 = 8580 = 260 ∗ 33
mmin

1 = mmax
1 = 7722/13505 = pmin

1 ∗ smin
1

Notice that smin
1 = smax

1 = 8580 < #(C1) = 9620, illustrating that the “bound-
ing box” of the polyhedron covers more area than is strictly necessary. The other
thing to notice is that the probabilities and probability mass are not normalized; we
do this for efficiency and precision considerations made clear in Section 5. Non-
normalized probabilities arise during conditioning—instead of performing Pr(A|B) =
Pr(A∧B)/Pr(B) we instead only perform the Pr(A∧B) component and delay nor-
malization until making a security decision. In this representation, after Example 1
returns False the probability of each bday , byear combination in the polyhedron would
be stored as 1

37∗365 instead of the full conditional probability 1
37∗365/

358
365 . After the

next query, Example 2, returns False, we would store 1
37∗365 ∗

9
10 , which is given above.

This probability corresponds to the probability Pr(A∧B∧C), whereA is the event of
having a particular non-special bday , byear not within the next week, B corresponds
to the event that the first query returns False and C corresponds to the event that the
second query returns False. To compute probabilities Pr(A|B ∧ C), we normalize by
dividing Pr(A ∧B ∧C) by Pr(B ∧C), which we can conveniently recover from the
total mass components of the probabilistic polyhedron.

Now if we consider the representation of Figure 1(b) in a similar manner, using the
same two polyhedra C1 and C2, the other parameters for C1 are as follows:

pmin
1 = 1/135050 = 1

37∗365 ∗
1
10 pmax

1 = 10/135050 = 1
37∗365

smin
1 = 9620 = 260 ∗ 37 smax

1 = 9620 = 260 ∗ 37
mmin

1 = 26/185 mmax
1 = 26/185

(1)

In this case smin
1 = smax

1 = #(C1), meaning that all covered points are possible, but
pmin

1 6= pmax
1 as some points are more probable than others (i.e., those in the darker

band). An astute reader might notice that here mmin
1 6= pmin

1 ∗ smin
1 and mmax

1 6=
pmax

1 ∗ smax
1 . The benefit of these seemingly redundant total mass quantities in the

representation is that they can sometimes be computed precisely. In this case mmin
1 =

mmax
1 = 4

37 ∗
260
365 + 1

10 ∗
33
37 ∗

260
365 . This quantity is the probability of the query returning

True while having a special year (first term) plus not having a special year (second
term).

The key property of probabilistic polyhedra, and a main technical contribution of
this paper, is that this abstraction can be used to make sound security policy decisions.
To accept a query, we must check that, for all possible outputs, the querier’s revised,
normalized belief of any of the possible secrets is below the threshold t. In checking
whether the revised beliefs in our example are acceptable, the agent will try to find
the maximum probability the querier could ascribe to a state, for each possible output.
In the case output = True, the most probable points are those in the dark bands,
which each have probability mass 10/135050 = pmax

1 (the dark bands in P2 have
the same probability). To find the maximum conditional, or normalized, probability
of these points, we divide by the minimum possible total mass, as given by the lower
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Variables x ∈ Var
Integers n ∈ Z
Rationals q ∈ Q
Arith.ops aop ::= + | × | −
Rel .ops relop ::= ≤ | < | = | 6= | · · ·
Arith.exps E ::= x | n | E1 aop E2

Bool .exps B ::= E1 relop E2 |
B1 ∧ B2 | B1 ∨ B2 | ¬B

Statements S ::= skip | x := E |
if B then S1 else S2 |
pif q then S1 else S2 |
S1 ; S2 | while B do S

Figure 2: Core language syntax

bounds in our abstraction. In our example, this results in pmax
1 /(mmin

1 + mmin
2 ) =

10
135050/

(
26
185 + 49

925

)
≈ 0.0004 ≤ td = 0.05.

As just shown, the bound on minimum total mass is needed in order to soundly
normalize distributions in our abstraction. The maintenance of such lower bounds on
probability mass is a key component of our abstraction that is missing from prior work.
Each of the components of a probabilistic polyhedron play a role in producing the
lower bound on total mass. While smin

1 , smax
1 ,pmin

1 , and mmax
1 do not play a role in

making the final policy decision, their existence allows us to more accurately update
belief during the query evaluation that precedes the final policy check. The choice of
the number of probabilistic polyhedra to use impacts both precision and performance,
so choosing the right number is a challenge.

Another precision/performance tradeoff coincides with the choice of the kind of
polyhedron used to represent constraints. If we restrict constraints to always form
intervals [16] (a.k.a. boxes) or octagons [39] we can speed up performance by simpli-
fying some of the abstract operations (e.g., counting points), but at the possible cost of
precision, since some polyhedral shapes are now approximated. For the queries given
in this section, using probabilistic polyhedra produces answers in a few seconds, while
using probabilistic intervals produces answers in a few milliseconds, with no loss of
precision. Details are given in Section 7.

3 Tracking beliefs
This section reviews Clarkson et al.’s method of revising a querier’s belief of the pos-
sible valuations of secret variables based on the result of a query involving those vari-
ables [14]. We retain Clarkson et al.’s notation for consistency.
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3.1 Core language
The programming language we use for queries is given in Figure 2. A computation
is defined by a statement S whose standard semantics can be viewed as a relation
between states: given an input state σ, running the program will produce an output
state σ′. States are maps from variables to integers:

σ, τ ∈ State def
= Var→ Z

Sometimes we consider states with domains restricted to a subset of variables V , in
which case we write σV ∈ StateV

def
= V → Z. We may also project states to a set of

variables V :
σ � V

def
= λx ∈ VarV . σ(x)

The language is essentially standard, though we limit the form of expressions to support
our abstract interpretation-based semantics (Section 5). The semantics of the statement
form pif q then S1 else S2 is non-deterministic: the result is that of S1 with probability
q, and S2 with probability 1− q.

Note that in our language, variables have only integer values and the syntax is
missing a division operator. Furthermore, we will restrict arithmetic expressions to be
of a linear forms only, that is, multiplication of two variables will be disallowed. These
restrictions ease implementation considerations. Easing these constraints is an aspect
of our future work.

3.2 Probabilistic semantics for tracking beliefs
To enforce a knowledge-based policy, an agent must be able to estimate what a querier
could learn from the output of his query. To do this, the agent keeps a distribution
δ that represents the querier’s belief of the likely valuations of the user’s secrets. A
distribution is a map from states to positive real numbers, interpreted as probabilities
(in range [0, 1]).

δ ∈ Dist def
= State→ R+

We sometimes focus our attention on distributions over states of a fixed set of variables
V , in which case we write δV ∈ DistV to mean a function StateV → R+. The
variables of a state, written fv(σ) is defined by domain(σ), sometimes we will refer to
this set as just the domain of σ. We will also use the this notation for distributions;
fv(δ)

def
= domain(domain(δ)). In the context of distributions, domain will also refer to

the set fv(δ) as opposed to domain(δ).
Projecting distributions onto a set of variables is as follows:1

δ � V
def
= λσV ∈ StateV .

∑
τ : τ�V=σV

δ(τ)

We will often project away a single variable. We will call this operation forget.
Intuitively the distribution forgets about a variable x.

fx(δ)
def
= δ � (fv(δ)− {x})

1The notation
∑
x : π ρ can be read ρ is the sum over all x such that formula π is satisfied (where x is

bound in ρ and π).
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[[skip]]δ = δ
[[x := E ]]δ = δ [x→ E ]

[[if B then S1 else S2]]δ = [[S1]](δ ∧B) + [[S2]](δ ∧ ¬B)
[[pif q then S1 else S2]]δ = [[S1]](q · δ) + [[S2]]((1− q) · δ)

[[S1 ; S2]]δ = [[S2]]([[S1]]δ)
[[while B do S ]] = lfp [λf : Dist→ Dist. λδ.

f ([[S ]](δ ∧B)) + (δ ∧ ¬B)]

where

δ [x→ E ]
def
= λσ.

∑
τ | τ [x→[[E ]]τ ]=σ δ(τ)

δ1 + δ2
def
= λσ. δ1(σ) + δ2(σ)

δ ∧ B
def
= λσ. if [[B ]]σ then δ(σ) else 0

p · δ def
= λσ. p · δ(σ)

‖δ‖ def
=
∑
σ δ(σ)

normal(δ) def
= 1
‖δ‖ · δ

δ|B def
= normal(δ ∧B)

δ1 × δ2
def
= λ(σ1, σ2). δ1(σ1) · δ2(σ2)

σ̇
def
= λτ. if σ = τ then 1 else 0

σ � V
def
= λx ∈ VarV . σ(x)

δ � V
def
= λσV ∈ StateV .

∑
τ : τ�V=σV

δ(τ)

fx(δ)
def
= δ � (fv(δ)− {x})

support(δ) def
= {σ : δ(σ) > 0}

Figure 3: Probabilistic semantics for the core language and index of state/distribution
operations

The mass of a distribution, written ‖δ‖ is the sum of the probabilities ascribed to
states,

∑
σ δ(σ). A normalized distribution is one such that ‖δ‖ = 1. A normalized

distribution can be constructed by scaling a distribution according to its mass:

normal(δ) def
=

1

‖δ‖
· δ

Normalization requires the mass of a distribution to be non-zero. We will only be
dealing with distributions of finite mass but some of the theory presented later makes
use of zero-mass distributions. There is one such distribution for each domain; when
the domain is understood from the context we will label its zero-mass distribution as
0Dist.

The support of a distribution is the set of states which have non-zero probability:
support(δ) def

= {σ : δ(σ) > 0}.
The agent evaluates a query in light of the querier’s initial belief using a probabilis-

tic semantics. Figure 3 defines a semantic function [[·]] whereby [[S ]]δ = δ′ indicates
that, given an input distribution δ, the semantics of program S is the output distribution
δ′. The semantics is defined in terms of operations on distributions.Here we briefly
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explain the concrete probabilistic semantics.
The semantics of skip is straightforward: it is the identity on distributions. The

semantics of sequences S1 ; S2 is also straightforward: the distribution that results
from executing S1 with δ is given as input to S2 to produce the result.

The semantics of assignment is δ [x→ E ], which is defined as follows:

δ [x→ E ]
def
= λσ.

∑
τ | τ [x→[[E ]]τ ]=σ

δ(τ)

In other words, the result of substituting an expression E for x is a distribution where
state σ is given a probability that is the sum of the probabilities of all states τ that are
equal to σ when x is mapped to the distribution on E in τ .

The semantics for conditionals makes use of two operators on distributions which
we now define. First, given distributions δ1 and δ2 we define the distribution sum as
follows:

δ1 + δ2
def
= λσ. δ1(σ) + δ2(σ)

In other words, the probability mass for a given state σ of the summed distribution is
just the sum of the masses from the input distributions for σ. Second, given a distri-
bution δ and a boolean expression B , we define the distribution conditioned on B to
be

δ ∧ B
def
= λσ. if [[B ]]σ then δ(σ) else 0

In short, the resulting distribution retains only the probability mass from δ for states σ
in which B holds.

With these two operators, the semantics of conditionals can be stated simply: the
resulting distribution is the sum of the distributions of the two branches, where the
first branch’s distribution is conditioned on B being true, while the second branch’s
distribution is conditioned on B being false.

The semantics for probabilistic conditionals is like that of conditionals but makes
use of distribution scaling, which is defined as follows: given δ and some scalar p in
[0, 1], we have

p · δ def
= λσ. p · δ(σ)

In short, the probability ascribed to each state is just the probability ascribed to that
state by δ but multiplied by p. For probabilistic conditionals, we sum the distributions
of the two branches, scaling them according to the odds q and 1− q.

The semantics of a single while-loop iteration is essentially that of if B then S else skip;
the semantics of the entire loop is the fixed point of a function that composes the
distributions produced by each iteration. That such a fixed point exists is proved by
Clarkson et al. [14]. For an implementation, however, the evaluation of a loop can
be performed naively, by repeatedly evaluating the loop body until the mass of δ ∧ B
becomes zero. This process has a chance of diverging, signifying an infinite loop on
some σ ∈ support(δ).

In Section 5 we make use of an additional convenience statement, uniform x n1 n2

(equivalent to a series of probabilistic conditionals) intended to assign a uniform value
in the range {n1, ..., n2} to the variable x.
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[[uniform x n1 n2]]δ = fx(δ)× δ′

Here we use the distribution product operator, which is defined for two distributions
with disjoint domains (sharing no variables):

δ1 × δ2
def
= λ(σ1, σ2). δ1(σ1) · δ2(σ2)

The notation (σ1, σ2) is the “concatenation” of two states with disjoint domains. In the
definition of uniform x n1 n2, δ′ is defined over just the variable x (removed from δ
by the forget operator) as follows.

δ′ = λσ. if n1 ≤ σ(x) ≤ n2 then
1

n2 − n1 + 1
else 0

3.3 Belief and security
Clarkson et al. [14] describe how a belief about possible values of a secret, expressed
as a probability distribution, can be revised according to an experiment using the actual
secret. Such an experiment works as follows.

The values of the set of secret variables H are given by the hidden state σH . The
attacker’s initial belief as to the possible values of σH is represented as a distribution
δH . A query is a program S that makes use of variables H and possibly other, non-
secret variables from a set L; the final values of L, after running S, are made visible
to the attacker. Let σL be an arbitrary initial state of these variables. Then we take the
following steps:

Step 1. Evaluate S probabilistically using the querier’s belief about the secret to
produce an output distribution δ′, which amounts to the attacker’s prediction of the
possible output states. This is computed as δ′ = [[S]]δ, where δ, a distribution over
variables H ∪ L, is defined as δ = δH × σ̇L. Here we write σ̇ to denote the point
distribution for which only σ is possible:

σ̇
def
= λτ. if σ = τ then 1 else 0

Thus, the initial distribution δ is the attacker’s belief about the secret variables com-
bined with an arbitrary valuation of the public variables.

Step 2. Using the actual secret σH , evaluate S “concretely” to produce an output
state σ̂L, in three steps. First, we have δ̂′ = [[S]]δ̂, where δ̂ = σ̇H×σ̇L. Second, we have
σ̂ ∈ Γ(δ̂′) where Γ is a sampling operator that produces a state σ from the domain of
a distribution δ with probability normal(δ)(σ). Finally, we extract the attacker-visible
output of the sampled state by projecting away the high variables: σ̂L = σ̂ � L. The
sampling here is needed because S may include probabilistic if statements, and so δ̂′
may not be a point distribution.

Step 3. Revise the attacker’s initial belief δH according to the observed output
σ̂L, yielding a new belief δ̂H = (δ′ ∧ σ̂L) � H . Here, δ′ is conditioned on the out-
put σ̂L, which yields a new distribution, and this distribution is then projected to the
variables H . The conditioned distribution δ̂H is the non-normalized representation of
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the attacker’s belief about the secret variables, after observing the final values of low
variables. In can be turned into a true distribution by normalizing it.

Note that this protocol assumes that S always terminates and does not modify the
secret state. The latter assumption can be eliminated by essentially making a copy
of the state before running the program, while eliminating the former depends on the
observer’s ability to detect nontermination [14].

4 Enforcing knowledge-based policies
When presented with a query over a user’s data σH , the user’s agent should only answer
the query if doing so will not reveal too much information. More precisely, given a
query S, the agent will return the public output σL resulting from running S on σH
if the agent deems that from this output the querier cannot know the secret state σH
beyond some level of doubt, identified by a threshold t. If this threshold could be
exceeded, then the agent declines to run S. We call this security check knowledge
threshold security.

Definition 3 (Knowledge Threshold Security). Let δ′ = [[S]]δ, where δ is the model
of the querier’s initial belief. Then query S is threshold secure iff for all σL ∈
support(δ′ � L) and all σ′H ∈ StateH we have (δ′|σL � H)(σ′H) ≤ t.

This definition can be related to the experiment protocol defined in Section 3.3.
First, δ′ in the definition is the same as δ′ computed in the first step of the protocol.
Step 2 in the protocol produces a concrete output σ̂L based on executing S on the actual
secret σH , and Step 3 revises the querier’s belief based on this output. Definition 3
generalizes these two steps: instead of considering a single concrete output based on
the actual secret it considers all possible concrete outputs, as given by support(δ′ � L),
and ensures that the revised belief in each case for all possible secret states must assign
probability no greater than t.

This definition considers a threshold for the whole secret state σH . As described in
Section 2 we can also enforce thresholds over portions of a secret state. In particular, a
threshold that applies only to variables V ⊆ H requires that all σ′V ∈ StateV result in
(δ′|σL � V )(σ′V ) ≤ t.

The two “foralls” in the definition are critical for ensuring security. The reason
was shown by the first example in Section 2: If we used the flawed approach of just
running the experiment protocol and checking if δ̂H(σH) > t then rejection depends
on the value of the secret state and could reveal information about it. The more general
policy ∀σL ∈ support(δ′ � L). (δ′|σL � H)(σH) ≤ t, would sidestep the problem in
the example, but this policy could still reveal information because it too depends on the
actual secret σH .

Definition 3 avoids any inadvertent information leakage because rejection is not
based on the actual secret: if there exists any secret such that a possible output would
reveal too much, the query is rejected. Definition 3 is equivalent to a worst-case condi-
tional vulnerability (upper) bound or alternatively a worst-case conditional min-entropy
(lower) bound. Min-entropy measures the expected likelihood of an adversary guess-
ing the secret value [53]; the stronger worst-case used in our definition does away with
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expectation and bounds this likelihood regardless of what the secret is. Such worst-
case measures were considered in [31] as a means of providing a stronger security
guarantee. In our case, however, the extra strength is a side-effect of our need for a
simulatable policy. See Section 9 for further details.

5 Belief revision via abstract interpretation
Consider how we might implement belief tracking and revision to enforce the threshold
security property given in Definition 3. A natural choice would be to evaluate queries
using a probabilistic programming language with support for conditioning, of which
there are many [45, 47, 44, 26, 30, 12, 38, 11]. Such languages are largely ineffective
for use in ensuring security guarantees. Approximate inference in these languages
cannot ensure security guarantees, while exact inference, due to its lack of abstraction
facilities, can be too inefficient when the state space is large.

We have developed a new means to perform probabilistic computation based on
abstract interpretation. In this approach, execution time depends on the complexity of
the query rather than the size of the input space. In the next two sections, we present
two abstract domains. This section presents the first, denoted P, where an abstract
element is a single probabilistic polyhedron, which is a convex polyhedron [19] with
information about the probabilities of its points.

Because using a single polyhedron will accumulate imprecision after multiple queries,
in our implementation we actually use a different domain, denoted Pn (P), for which
an abstract element consists of a set of at most n probabilistic polyhedra (whose con-
struction is inspired by powersets of polyhedra [9, 46]). This domain, described in the
next section, allows us to retain precision at the cost of increased execution time. By
adjusting n, the user can trade off efficiency and precision. An important element of
our approach is the ability to soundly evaluate the knowledge-threshold policies, even
under approximate inference.

5.1 Polyhedra
We first review convex polyhedra, a common technique for representing sets of program
states. We use the meta-variables β, β1, β2, etc. to denote linear inequalities. We write
fv(β) to be the set of variables occurring in β; we also extend this to sets, writing
fv({β1, . . . , βn}) for fv(β1) ∪ . . . ∪ fv(βn).

Definition 4. A convex polyhedron C = (B, V ) is a set of linear inequalities B =
{β1, . . . , βm}, interpreted conjunctively, over dimensions V . We write C for the set
of all convex polyhedra. A polyhedron C represents a set of states, denoted γC(C), as
follows, where σ |= β indicates that the state σ satisfies the inequality β.

γC((B, V ))
def
= {σ : fv(σ) = V, ∀β ∈ B. σ |= β}

Naturally we require that fv({β1, . . . , βn}) ⊆ V . We write fv((B, V )) to denote
the set of variables V of a polyhedron.
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Given a state σ and an ordering on the variables in fv(σ), we can view σ as a
point in an N -dimensional space, where N = |fv(σ)|. The set γC(C) can then be
viewed as the integer-valued lattice points in anN -dimensional polyhedron. Due to this
correspondence, we use the words point and state interchangeably. We will sometimes
write linear equalities x = f(~y) as an abbreviation for the pair of inequalities x ≤ f(~y)
and x ≥ f(~y).

Let C = (B, V ). Convex polyhedra support the following operations.

• Polyhedron size, or #(C), is the number of integer points in the polyhedron,
i.e., |γC(C)|. We will always consider bounded polyhedra when determining
their size, ensuring that #(C) is finite.

• (Logical) expression evaluation, 〈〈B〉〉C returns a convex polyhedron containing
at least the points inC that satisfy B . Note thatB may or may not have disjuncts.

• Expression count, C#B returns an upper bound on the number of integer points
in C that satisfy B . Note that this may be more precise than #(〈〈B〉〉C) if B has
disjuncts.

• Meet, C1 uC C2 is the convex polyhedron containing exactly the set of points in
the intersection of γC(C1), γC(C2).

• Join, C1 tC C2 is the smallest convex polyhedron containing both γ(C1) and
γ(C2).

• Comparison, C1 vC C2 is a partial order whereby C1 vC C2 if and only if
γC(C1) ⊆ γC(C2).

• Affine transform, C [x→ E ], where x ∈ fv(C), computes an affine transforma-
tion of C. This scales the dimension corresponding to x by the coefficient of x
in E and shifts the polyhedron. For example, ({x ≤ y, y = 2z}, V ) [y → z + y]
evaluates to ({x ≤ y − z, y − z = 2z}, V ).

• Forget, fx(C), projects away x. That is, fx(C) = πfv(C)−{x}(C), where πV (C)
is a polyhedron C ′ such that γC(C ′) = {σ : τ ∈ γC(C) ∧ σ = τ � V }. So
C ′ = fx(C) implies x 6∈ fv(C ′). The projection of C to variables V , written
C � V is defined as the forgetting of all the dimensions of C other than V .

• Linear partition CA ↘↙ CB of two (possibly overlapping) polyhedra CA, CB is
a set of equivalent disjoint polyhedra {Ci}ni=1. That is, ∪iγC(Ci) = γC(CA) ∪
γC(CB) and γC(Ci) ∩ γC(Cj) = ∅ for i 6= j. When CA and CB do not overlap
then CA ↘↙ CB = {CA, CB}.

We write isempty(C) iff γC(C) = ∅.

5.2 Probabilistic Polyhedra
We take this standard representation of sets of program states and extend it to a repre-
sentation for sets of distributions over program states. We define probabilistic polyhe-
dra, the core element of our abstract domain, as follows.
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Definition 5. A probabilistic polyhedronP is a tuple (C, smin, smax,pmin, pmax,mmin,
mmax). We write P for the set of probabilistic polyhedra. The quantities smin and smax

are lower and upper bounds on the number of support points in the polyhedron C. The
quantities pmin and pmax are lower and upper bounds on the probability mass per sup-
port point. The mmin and mmax components give bounds on the total probability mass.
Thus P represents the set of distributions γP(P) defined below.

γP(P)
def
= {δ : support(δ) ⊆ γC(C) ∧

smin ≤ |support(δ)| ≤ smax ∧
mmin ≤ ‖δ‖ ≤ mmax∧
∀σ ∈ support(δ). pmin ≤ δ(σ) ≤ pmax}

We will write fv(P)
def
= fv(C) to denote the set of variables used in the probabilistic

polyhedron.

Note the set γP(P) is a singleton exactly when smin = smax = #(C) and pmin =
pmax, and mmin = mmax. In such a case γP(P) contains only the uniform distribution
where each state in γC(C) has probability pmin. In general, however, the concretiza-
tion of a probabilistic polyhedron will have an infinite number of distributions. For
example, the pair of probabilistic polyhedra in Section 2, Equation 1 admits an in-
finite set of distributions, with per-point probabilities varied somewhere in the range
pmin

1 and pmax
1 . The representation of the non-uniform distribution in that example is

thus approximate, but the security policy can still be checked via the pmax
1 (and mmax

2 )
properties of the probabilistic polyhedron.

Distributions represented by a probabilistic polyhedron are not necessarily normal-
ized (as was true in Section 3.2). In general, there is a relationship between pmin, smin,
and mmin, in that mmin ≥ pmin · smin (and mmax ≤ pmax · smax), and the combination
of the three can yield more information than any two in isolation.

Our convention will be to use C1, smin
1 , smax

1 , etc. for the components associated
with probabilistic polyhedron P1 and to use subscripts to name different probabilistic
polyhedra.

Ordering. Distributions are ordered point-wise [14]. That is, δ1 ≤ δ2 if and only
if ∀σ. δ1(σ) ≤ δ2(σ). For our abstract domain, we say that P1 vP P2 if and only if
∀δ1 ∈ γP(P1). ∃δ2 ∈ γP(P2). δ1 ≤ δ2. Testing P1 vP P2 mechanically is non-trivial,
but is unnecessary in our semantics. Rather, we need to test whether a distribution
represents only the zero distribution 0Dist

def
= λσ.0 in order to see that a fixed point for

evaluating 〈〈while B do S 〉〉P has been reached. Intuitively, no further iterations of the
loop need to be considered once the probability mass flowing into the nth iteration is
zero. This condition can be detected as follows:

iszero(P)
def
=(

smin = smax = 0 ∧mmin = 0 ≤ mmax
)

∨
(
mmin = mmax = 0 ∧ smin = 0 ≤ smax

)
∨
(
isempty(C) ∧ smin = 0 ≤ smax ∧mmin = 0 ≤ mmax

)
∨
(
pmin = pmax = 0 ∧ smin = 0 ≤ smax ∧mmin = 0 ≤ mmax

)
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If iszero(P) holds, it is the case that γP(P) = {0Dist}. This definition distinguishes
γP(P) = ∅ (if P has inconsistent constraints) from γP(P) = {0Dist}. Note that hav-
ing a more conservative definition of iszero(P) (which holds for fewer probabilistic
polyhedra P) would simply mean our analysis would terminate less often than it could,
with no effect on security.

Following standard abstract interpretation terminology, we will refer to P (Dist)
(sets of distributions) as the concrete domain, P as the abstract domain, and γP : P→
P (Dist) as the concretization function for P.

5.3 Abstract Semantics for P
To support execution in the abstract domain just defined, we need to provide abstract
implementations of the basic operations of assignment, conditioning, addition, and
scaling used in the concrete semantics given in Figure 3. We will overload notation
and use the same syntax for the abstract operators as we did for the concrete operators.

As we present each operation, we will also state the associated soundness theo-
rem which shows that the abstract operation is an over-approximation of the concrete
operation. Proofs are given in a separate technical report [36].

The abstract program semantics is then exactly the semantics from Figure 3, but
making use of the abstract operations defined here, rather than the operations on distri-
butions defined in Section 3.2. We will write 〈〈S〉〉P to denote the result of executing S
using the abstract semantics. The main soundness theorem we obtain is the following.

Theorem 6. For all P, δ, if δ ∈ γP(P) and 〈〈S〉〉P terminates, then [[S]]δ terminates
and [[S]]δ ∈ γP(〈〈S〉〉P).

When we say [[S]]δ terminates (or 〈〈S〉〉P terminates) we mean that only a finite
number of loop iterations are required to interpret the statement on a particular dis-
tribution (or probabilistic polyhedron). In the concrete semantics, termination can be
checked by iterating until the mass of δ ∧B (where B is a guard) becomes zero. (Note
that [[S]]δ is always defined, even for infinite loops, as the least fixed-point is always
defined, but we need to distinguish terminating from non-terminating loops for secu-
rity reasons, as per the comment at the end of Section 3.3.) To check termination in the
abstract semantics, we check that upper bound on the mass of P ∧ B becomes zero.
In a standard abstract domain, termination of the fixed point computation for loops is
often ensured by use of a widening operator. This allows abstract fixed points to be
computed in fewer iterations and also permits analysis of loops that may not terminate.
In our setting, however, non-termination may reveal information about secret values.
As such, we would like to reject queries that may be non-terminating.

We enforce this by not introducing a widening operator [19, 15]. Our abstract
interpretation then has the property that it will not terminate if a loop in the query
may be non-terminating (and, since it is an over-approximate analysis, it may also fail
to terminate even for some terminating computations). We then reject all queries for
which our analysis fails to terminate in some predefined amount of time. Loops do not
play a major role in any of our examples, and so this approach has proved sufficient
so far. We leave for future work the development of a widening operator that soundly
accounts for non-termination behavior.
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The proof for Theorem 6 is a structural induction on S; the meat of the proof is in
the soundness of the various abstract operations. The following sections present these
abstract operations and their soundness relative to the concrete operations. The basic
structure of all the arguments is the same: the abstract operation over-approximates the
concrete one.

5.3.1 Forget

We first describe the abstract forget operator fy(P1), which is used in implementing
assignment. Our abstract implementation of the operation must be sound relative to the
concrete one, specifically, if δ ∈ γP(P) then fy(δ) ∈ γP(fy(P)).

The concrete forget operation projects away a single dimension:

fx(δ)
def
= δ � (fv(δ)− {x})

= λσV ∈ StateV .
∑

τ : τ�V=σV

δ(τ) where V = fv(δ)− {x}

When we forget variable y, we collapse any states that are equivalent up to the value of
y into a single state.

To do this soundly, we must find an upper bound hmax
y and a lower bound hmin

y on
the number of integer points in C1 that share the value of the remaining dimensions
(this may be visualized of as the min and max height of C1 in the y dimension). More
precisely, if V = fv(C1) − {y}, then for every σV ∈ γC(C1 � V ) we have hmin

y ≤
|{σ ∈ γC(C1) : σ � V = σV }| ≤ hmax

y . Once these values are obtained, we have that
fy(P1)

def
= P2 where the following hold of P2.

C2 = fy(C1)

pmin
2 = pmin

1 ·max
{

hmin
y − (#(C1)− smin

1 ), 1
}

pmax
2 = pmax

1 ·min
{

hmax
y , smax

1

}
smin
2 = dsmin

1 /hmax
y e mmin

2 = mmin
1

smax
2 = min {#(fy(C1)), smax

1 } mmax
2 = mmax

1

The new values for the under and over-approximations of the various parameters
are derived by reasoning about the situations in which these quantities could be the
smallest or the greatest, respectively, over all possible δ2 ∈ γP(P2) where δ2 = fy(δ1),
δ1 ∈ γP(P1). We summarize the reasoning behind the calculations below:

• pmin
2 : The minimum probability per support point is derived by considering a

point of P2 that had the least amount of mass of P1 mapped to it. Let us call this
point σV and the set of points mapped to it S = {σ ∈ γC(C1) : σ � V = σV }.
S could have as little as hmin

y points, as per definition of hmin
y and not all of these

points must be mass-carrying. There are at least smin
1 mass-carrying points inC1.

If we assume that as many as possible of the mass carrying points in the region
C1 are outside of S, it must be that S still contains at least hmin

y −(#(C1)−smin
1 )

mass carrying-points, each having probability at least pmin
1 .

19



Figure 4: Example of a forget operation in the abstract domain P. In this case, hmin
y = 1

and hmax
y = 3. Note that hmax

y is precise while hmin
y is an under-approximation. If

smin
1 = smax

1 = 9 then we have smin
2 = 3, smax

2 = 4, pmin
2 = pmin

1 · 1, pmax
2 = pmax

2 · 4.

• pmax
2 : The maximum number of points of P1 that get mapped to a single point in
P2 cannot exceed smax

1 , the number of support points in P1. Likewise it cannot
exceed hmax

y as per definition of hmax
y .

• smin
2 : There cannot be more than hmax

y support points of P1 that map to a single
point in P2 and there are at least smin

1 support points in P1. If we assume that
every single support point of P2 had the maximum number of points mapped to
it, there would still be dsmin

1 /hmax
y e distinct support points in P2.

• smax
2 : The maximum number of support points cannot exceed the size of the

region defining P2. It also cannot exceed the number of support points of P1,
even if we assumed there was a one-to-one mapping between the support points
of P1 and support points of P2.

Figure 4 gives an example of a forget operation and illustrates the quantities hmax
y

and hmin
y . If C1 = (B1, V1), the upper bound hmax

y can be found by maximizing y− y′
subject to the constraints B1 ∪ B1[y′/y], where y′ is a fresh variable and B1[y′/y]
represents the set of constraints obtained by substituting y′ for y in B1. As our points
are integer-valued, this is an integer linear programming problem (and can be solved
by ILP solvers). A less precise upper bound can be found by simply taking the extent
of the polyhedron C1 along y, which is given by #(πy(C1)).

For the lower bound, it is always sound to use hmin
y = 1. A more precise estimate

can be obtained by treating the convex polyhedron as a subset of Rn and finding the
vertex with minimal height along dimension y. Call this distance u. An example of
this quantity is labeled hmin

y in Figure 4. Since the shape is convex, all other points will
have y height greater than or equal to u. We then find the smallest number of integer
points that can be covered by a line segment of length u. This is given by due − 1.
The final under-approximation is then taken to be the larger of 1 and due − 1. As this
method requires us to inspect every vertex of the convex polyhedron and to compute
the y height of the polyhedron at that vertex, we can also look for the one upon which
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the polyhedron has the greatest height, providing us with the estimate for hmax
y .

Lemma 7. If δ ∈ γP(P) then fy(δ) ∈ γP(fy(P)).

We can define an abstract version of projection using forget:

Definition 8. Let f{x1,x2,...,xn}(P) = f{x2,...,xn}(fx1
(P)). ThenP � V ′ = f(fv(P)−V ′)(P).

That is, in order to project onto the set of variables V ′, we forget all variables not
in V ′.

5.3.2 Assignment

The concrete assignment operation is defined so that the probability of a state σ is the
accumulated probability mass of all states τ that lead to σ via the assignment:

δ [x→ E ]
def
= λσ.

∑
τ : τ [x→[[E ]]τ ]=σ

δ(τ)

The abstract implementation of this operation strongly depends on the invertibility
of the assignment. Intuitively, the set {τ : τ [x→ [[E ]]τ ] = σ} can be obtained from
σ by inverting the assignment, if invertible.2 Otherwise, the set can be obtained by
forgetting about the x variable in σ.

Similarly, we have two cases for abstract assignment. If x := E is invertible,
the result of the assignment P1 [x→ E] is the probabilistic polyhedron P2 such that
C2 = C1 [x→ E] and all other components are unchanged. If the assignment is not
invertible, then information about the previous value of x is lost. In this case, we forget
x thereby projecting (or “flattening”) onto the other dimensions. Then we introduce
dimension x back and add a constraint on x that is defined by the assignment. More
precisely the process is as follows. Let P2 = fx(P1) where C2 = (B2, V2). Then
P1 [x→ E] is the probabilistic polyhedron P3 with C3 = (B2 ∪ {x = E} , V2 ∪ {x})
and all other components as in P2.

The test for invertibility itself is simple as our system restricts arithmetic expres-
sions to linear ones. Invertibility relative to a variable x is then equivalent to the pres-
ence of a non-zero coefficient given to x in the expression on the right-hand-side of the
assignment. For example, x := 42x+ 17y is invertible but x := 17y is not.

Lemma 9. If δ ∈ γP(P) then δ [v → E ] ∈ γP(P [v → E ]).

The soundness of assignment relies on the fact that our language of expressions
does not include division. An invariant of our representation is that smax ≤ #(C).
When E contains only multiplication and addition the above rules preserve this invari-
ant; an E containing division would violate it. Division would collapse multiple points
to one and so could be handled similarly to projection.

2An assignment x := E is invertible if there exists an inverse function f : State → State such
that f ([[x := E]]σ) = σ for all σ. Note that the f here needs not be expressible as an assignment in
our (integer-based) language, and generally would not be as most integers have no integer multiplicative
inverses.
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5.3.3 Plus

The concrete plus operation adds together the mass of two distributions:

δ1 + δ2
def
= λσ. δ1(σ) + δ2(σ)

The abstract counterpart needs to over-approximate this semantics. Specifically, if
δ1 ∈ γP(P1) and δ2 ∈ γP(P2) then δ1 + δ2 ∈ γP(P1 + P2).

The abstract sum of two probabilistic polyhedra can be easily defined if their sup-
port regions do not overlap. In such situations, we would define P3 as below:

C3 = C1 tC C2

pmin
3 = min

{
pmin

1 ,pmin
2

}
pmax

3 = max {pmax
1 ,pmax

2 }
smin
3 = smin

1 + smin
2

smax
3 = smax

1 + smax
2

mmin
3 = mmin

1 + mmin
2

mmax
3 = mmax

1 + mmax
2

If there is overlap between C1 and C2, the situation becomes more complex. To
soundly compute the effect of plus we need to determine the minimum and maximum
number of points in the intersection that may be support points for both P1 and for P2.
We refer to these counts as the pessimistic overlap and optimistic overlap, respectively,
and define them below.

Definition 10. Given two distributions δ1, δ2, we refer to the set of states that are in
the support of both δ1 and δ2 as the overlap of δ1, δ2. The pessimistic overlap of P1

and P2, denoted P1 / P2, is the cardinality of the smallest possible overlap for any
distributions δ1 ∈ γP(P1) and δ2 ∈ γP(P2). The optimistic overlap P1 , P2 is the
cardinality of the largest possible overlap. Formally, we define these as follows. .

P1 / P2
def
= max

{
smin
1 + smin

2 −
(

#(C1) + #(C2)−#(C1 uC C2)
)
, 0
}

P1 , P2
def
= min

{
smax
1 , smax

2 ,#(C1 uC C2)
}

The pessimistic overlap is derived from the usual inclusion-exclusion principle:
|A ∩B| = |A|+ |B| − |A ∪B|. The optimistic overlap is trivial; it cannot exceed the
support size of either distribution or the size of the intersection.

We can now define abstract addition.

Definition 11. If not iszero(P1) and not iszero(P2) then P1 + P2 is the probabilistic
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polyhedron P3 = (C3, s
min
3 , smax

3 ,pmin
3 ,pmax

3 ) defined as follows.

C3 = C1 tC C2

pmin
3 =

{
pmin

1 + pmin
2 if P1 / P2 = #(C3)

min
{

pmin
1 ,pmin

2

}
otherwise

pmax
3 =

{
pmax

1 + pmax
2 if P1 , P2 > 0

max {pmax
1 ,pmax

2 } otherwise

smin
3 = max

{
smin
1 + smin

2 − P1 , P2, 0
}

smax
3 = min {smax

1 + smax
2 − P1 / P2, #(C3)}

mmin
3 = mmin

1 + mmin
2 | mmax

3 = mmax
1 + mmax

2

If iszero(P1) then we define P1 + P2 as identical to P2; if iszero(P2), the sum is
defined as identical to P1.

Lemma 12. If δ1 ∈ γP(P1) and δ2 ∈ γP(P2) then δ1 + δ2 ∈ γP(P1 + P2).

5.3.4 Product

The concrete product operation merges two distributions over distinct variables into a
compound distribution over the union of the variables:

δ1 × δ2
def
= λ(σ1, σ2). δ1(σ1) · δ2(σ2)

When evaluating the product P3 = P1×P2, we assume that the domains of P1 and
P2 are disjoint, i.e., C1 and C2 refer to disjoint sets of variables. If C1 = (B1, V1) and
C2 = (B2, V2), then the polyhedron C1 × C2

def
= (B1 ∪B2, V1 ∪ V2) is the Cartesian

product of C1 and C2 and contains all those states σ for which σ � V1 ∈ γC(C1) and
σ � V2 ∈ γC(C2). Determining the remaining components is straightforward since P1

and P2 are disjoint.

C3 = C1 × C2

pmin
3 = pmin

1 · pmin
2 pmax

3 = pmax
1 · pmax

2

smin
3 = smin

1 · smin
2 smax

3 = smax
1 · smax

2

mmin
3 = mmin

1 ·mmin
2 mmax

3 = mmax
1 ·mmax

2

Lemma 13. For all P1, P2 such that fv(P1) ∩ fv(P2) = ∅, if δ1 ∈ γP(P1) and δ2 ∈
γP(P2) then δ1 × δ2 ∈ γP(P1 × P2).

In our examples we often find it useful to express uniformly distributed data di-
rectly, rather than encoding it using pif. In particular, we extend statements S to in-
clude the statement of the form uniform x n1 n2 whose semantics is to define variable
x as having a value uniformly distributed between n1 and n2.

〈〈uniform x n1 n2〉〉P1 = fx(P1)× P2
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Here, P2 has pmin
2 = pmax

2 = 1
n2−n1+1 , smin

2 = smax
2 = n2−n1 +1, mmin

2 = mmax
2 =

1, and C2 = ({x ≥ n1, x ≤ n2} , {x}).
We will say that the abstract semantics correspond to the concrete semantics of

uniform defined similarly as follows.

[[uniform x n1 n2]]δ = (δ � fv(δ)− {x})× δ2

where δ2 = (λσ.if n1 ≤ σ(x) ≤ n2 then 1
n2−n1+1 else 0).

The soundness of the abstract semantics follows immediately from the soundness
of forget and product.

5.3.5 Conditioning

The concrete conditioning operation restricts a distribution to a region defined by a
boolean expression, nullifying any probability mass outside it:

δ ∧ B
def
= λσ. if [[B ]]σ then δ(σ) else 0

Distribution conditioning for probabilistic polyhedra serves the same role as meet
in the classic domain of polyhedra in that each is used to perform abstract evaluation
of a conditional expression in its respective domain.

Definition 14. Consider the probabilistic polyhedron P1 and Boolean expression B .
Let n, n be such that n = C1#B and n = C1#(¬B). The value n is an over-
approximation of the number of points in C1 that satisfy the condition B and n is an
over-approximation of the number of points in C1 that do not satisfy B . Then P1 ∧ B
is the probabilistic polyhedron P2 defined as follows.

pmin
2 = pmin

1 smin
2 = max

{
smin
1 − n, 0

}
pmax

2 = pmax
1 smax

2 = min {smax
1 , n}

mmin
2 = max

{
pmin

2 · smin
2 , mmin

1 − pmax
1 ·min {smax

1 , n}
}

mmax
2 = min

{
pmax

2 · smax
2 , mmax

1 − pmin
1 ·max

{
smin
1 − n, 0

}}
C2 = 〈〈B〉〉C1

The maximal and minimal probability per point are unchanged, as conditioning
simply retains points from the original distribution. To compute the minimal number
of points in P2, we assume that as many points as possible from C1 fall in the region
satisfying ¬B . The maximal number of points is obtained by assuming that a maximal
number of points fall within the region satisfying B .

The total mass calculations are more complicated. There are two possible ap-
proaches to computing mmin

2 and mmax
2 . The bound mmin

2 can never be less than
pmin

2 · smin
2 , and so we can always safely choose this as the value of mmin

2 . Simi-
larly, we can always choose pmax

2 · smax
2 as the value of mmax

2 . However, if mmin
1 and

mmax
1 give good bounds on total mass (i.e., mmin

1 is much higher than pmin
1 · smin

1 and
dually for mmax

1 ), then it can be advantageous to reason starting from these bounds.
We can obtain a sound value for mmin

2 by considering the case where a maximal
amount of mass from C1 fails to satisfy B. To do this, we compute n = C1#¬B ,
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Figure 5: Example of distribution conditioning in the abstract domain P.

which provides an over-approximation of the number of points within C1 but outside
the area satisfying B. We bound n by smax

1 and then assign each of these points maxi-
mal mass pmax

1 , and subtract this from mmin
1 , the previous lower bound on total mass.

By similar reasoning, we can compute mmax
2 by assuming a minimal amount of

mass m is removed by conditioning, and subtracting m from mmax
1 . This m is given

by considering an under-approximation of the number of points falling outside the area
of overlap between C1 andB and assigning each point minimal mass as given by pmin

1 .
This m is given by max

(
smin
1 − n, 0

)
.

Figure 5 demonstrates the components that affect the conditioning operation. The
figure depicts the integer-valued points present in two polyhedra—one representing
C1 and the other representing B (shaded). As the set of points in C1 satisfying B is
convex, this region is precisely represented by 〈〈B〉〉C1. By contrast, the set of points
in C1 that satisfy ¬B is not convex, and thus 〈〈¬B〉〉C1 is an over-approximation. The
icons beside the main image indicate which shapes correspond to which components
and the numbers within the icons give the total count of points within those shapes.

Suppose the components of P1 are as follows.

smin
1 = 19 pmin

1 = 0.01 mmin
1 = 0.85

smax
1 = 20 pmax

1 = 0.05 mmax
1 = 0.9

Then n = 4 and n = 16. Note that we have set n to be the number of points in the non-
shaded region of Figure 5. This is more precise than the count given by #(〈〈B〉〉C),
which would yield 18. This demonstrates why it is worthwhile to have a separate
operation for counting points satisfying a boolean expression. These values of n and n
give us the following for the first four numeric components of P2.

smin
2 = max(19− 16, 0) = 3 pmin

2 = 0.01
smax
2 = min(20, 4) = 4 pmax

2 = 0.05

For the mmin
2 and mmax

2 , we have the following for the method of calculation based on
p

min/max
2 and s

min/max
2 .

mmin
2 = 0.01 · 3 = 0.03 mmax

2 = 0.05 · 4 = 0.2

For the method of computation based on m
min/max
1 , we have

mmin
2 = 0.85− 0.05 · 16 = 0.05

mmax
2 = 0.9− 0.01 · (19− 4) = 0.75
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In this case, the calculation based on subtracting from total mass provides a tighter
estimate for mmin

2 , while the method based on multiplying pmax
2 and smax

2 is better for
mmax

2 .

Lemma 15. If δ ∈ γP(P) then δ ∧B ∈ γP(P ∧B).

5.3.6 Scalar Product

The scalar product is straightforward both in the concrete and abstract sense; it just
scales the mass per point and total mass:

p · δ def
= λσ. p · δ(σ)

Definition 16. Given a scalar p in (0, 1], we write p·P1 for the probabilistic polyhedron
P2 specified below.

smin
2 = smin

1 pmin
2 = p · pmin

1

smax
2 = smax

1 pmax
2 = p · pmax

1

mmin
2 = p ·mmin

1 C2 = C1

mmax
2 = p ·mmax

1

If p = 0 then p · P2 is defined instead as below:

smin
2 = 0 pmin

2 = 0
smax
2 = 0 pmax

2 = 0
mmin

2 = 0 C2 = 0C
mmax

2 = 0

Here 0C refers to a convex polyhedra (over the same dimensions as C2) whose
concretization is empty.

Lemma 17. If δ1 ∈ γP(P1) then p · δ1 ∈ γP(p · P1).

5.3.7 Normalization

The normalization of a distribution produces a true probability distribution, whose total
mass is equal to 1:

normal(δ) def
=

1

‖δ‖
· δ

If a probabilistic polyhedron P has mmin = 1 and mmax = 1 then it represents a
normalized distribution. We define below an abstract counterpart to distribution nor-
malization, capable of transforming an arbitrary probabilistic polyhedron into one con-
taining only normalized distributions.

Definition 18. Whenever mmin
1 > 0, we write normal(P1) for the probabilistic poly-

hedron P2 specified below.

pmin
2 = pmin

1 /mmax
1 smin

2 = smin
1

pmax
2 = pmax

1 /mmin
1 smax

2 = smax
1

mmin
2 = mmax

2 = 1 C2 = C1
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When mmin
1 = 0, we set pmax

2 = 1. Note that if P1 is the zero distribution then
normal(P1) is not defined.

The normalization operator illustrates the key novelty of our definition of proba-
bilistic polyhedron: to ensure that the overapproximation of a state’s probability (pmax)
is sound, we must divide by the underapproximation of the total probability mass
(mmin).

Lemma 19. If δ1 ∈ γP(P1) and normal(δ1) is defined, then normal(δ1) ∈ γP(normal(P1)).

5.4 Policy Evaluation
Here we show how to implement the threshold test given as Definition 3 using proba-
bilistic polyhedra. To make the definition simpler, let us first introduce a bit of notation.

Notation 20. If P is a probabilistic polyhedron over variables V , and σ is a state over
variables V ′ ⊆ V , then P ∧ σ def

= P ∧ B where B =
∧
x∈V ′ x = σ(x).

Recall that we define δ|B in the concrete semantics to be normal(δ ∧ B). The
corresponding operation in the abstract semantics is similar: P|B def

= normal(P ∧ B).

Definition 21. Given some probabilistic polyhedron P1 and statement S, with low
security variables L and high security variables H , where 〈〈S〉〉P1 terminates, let P2 =
〈〈S〉〉P1 and P3 = P2 � L. If, for every σL ∈ γC(C3) with ¬iszero(P2 ∧ σL), we have
P4 = (P2|σL) � H with pmax

4 ≤ t, then we write tsecuret(S, P1).

The computation of P3 involves only abstract interpretation and projection, which
are computable using the operations defined previously in this section. If we have a
small number of outputs (as for the binary outputs considered in our examples), we can
enumerate them and check ¬iszero(P2∧σL) for each output σL. When this holds (that
is, the output is feasible), we compute P4, which again simply involves the abstract op-
erations defined previously. The final threshold check is then performed by comparing
pmax

4 to the probability threshold t.
Now we state the main soundness theorem for abstract interpretation using prob-

abilistic polyhedra. This theorem states that the abstract interpretation just described
can be used to soundly determine whether to accept a query.

Theorem 22. Let δ be an attacker’s initial belief. If δ ∈ γP(P1) and tsecuret(S, P1),
then S is threshold secure for threshold t when evaluated with initial belief δ.

The proof of this theorem follows from the soundness of the abstraction (Theorem
6), noting the direct parallels of threshold security definitions for distributions (Defini-
tions 3) and probabilistic polyhedra (Definition 21).

5.5 Supporting Other Domains, Including Intervals and Octagons
Our approach to constructing probabilistic polyhedra from normal polyhedra can be
adapted to add probabilities any other abstract domain for which the operations defined
in Section 5.1 can be implemented. Most of the operations listed there are standard to
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Figure 6: The (over)approximation of a polyhedron using an octagon (left) and an
interval (right).

abstract domains in general, except for the size operation and the related expression
count. Adopting an abstract domain to our system would therefore only require de-
signing these counting methods for the new domain.

Two domains that are very easy to adapt that are in common use are intervals and
octagons. Intervals [16], CI, are convex shapes that can be described as a set of closed
intervals, one for each dimension. Alternatively they can be thought of a restricted
form of polyhedra in which the constraints I all have the form a ≤ x ≤ b. Operations
on intervals are much faster than on polyhedra. Specific to our requirements, counting
the integer points inside interval regions and determining their height for the forget
operation are both trivial computations.

Octagons [39], CO, are formed by constraints O that have the form ax + by ≤
c where a, b ∈ {−1, 0, 1}. In two dimensions these shapes, appropriately, have at
most 8 sides. If the number of dimensions is fixed, the number of constraints and the
number of vertices of an octagon are bounded. Furthermore, the operations on octagons
have lower computational complexity than those for polyhedra, though they are not as
efficient as those for intervals.

Any interval or octagon is also a polyhedron. Conversely, one can over-approximate
any polyhedron by an interval or octagon. Naturally the smallest over-approximation
is of greatest interest. Examples are illustrated in Figure 6. This fact is relevant
when computing the various equivalent operations to those listed for polyhedra in Sec-
tion 5.1: applying the definitions given there on octagons/intervals may not necessarily
result in octagons/intervals, and so the result must be further approximated. For ex-
ample, consider the evaluation operation 〈〈B〉〉 I . This must compute a region that
contains at least the points in I satisfying B . Thus, if a non-octagon/interval is pro-
duced, it can simply be over-approximated. Another example is the affine transform
operation I [x→ E ], which should contain at least the points τ = σ [x→ E ] with
σ ∈ γCI(I), where σ [x→ E ] is a single state transformed by the expression E . In
general the operations for simpler domains are much faster than those for more com-
plex domains. Though the imprecision and thus the need to approximate expression
evaluation might make it occasionally slower, for our experiments any slowdown is
typically overshadowed by the reduced complexity overall.

Thus we can construct abstractions of probability distributions based on these sim-
pler domains instead of polyhedra. The domain of probabilistic intervals I (octagons
O) is defined as in Section 5, except using an interval (octagon) instead of polyhedron
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for the region constraint. The abstract semantics described in this section can then be
soundly implemented in terms of these simpler shapes in place of polyhedra.

Remark 23. If δ ∈ γP(P) then δ ∈ γI(I) and δ ∈ γO(O), where I and O are identical
to P except P has region constrained by C, a convex polyhedron, while I is con-
strained by interval CI and O is constrained by octagon CO, with γC(C) ⊆ γCI(CI)
and γC(C) ⊆ γCO(CO).

6 Powerset of Probabilistic Polyhedra
This section presents the Pn (P) domain, an extension of the P domain that abstractly
represents a set of distributions as at most n probabilistic polyhedra, elements of P.

Definition 24. A probabilistic (polyhedral) set ∆ is a set of probabilistic polyhedra, or
{Pi} with each Pi over the same variables.3 We write Pn (P) for the domain of proba-
bilistic polyhedral powersets composed of no more than n probabilistic polyhedra.

Each probabilistic polyhedron P is interpreted disjunctively: it characterizes one of
many possible distributions. The probabilistic polyhedral set is interpreted additively.
To define this idea precisely, we first define a lifting of + to sets of distributions. Let
D1, D2 be two sets of distributions. We then define addition as follows.

D1 +D2 = {δ1 + δ2 : δ1 ∈ D1 ∧ δ2 ∈ D2}

This operation is commutative and associative and thus we can use
∑

for summations
without ambiguity as to the order of operations. The concretization function for Pn (P)
is then defined as:

γPn(P)(∆)
def
=
∑
P∈∆

γP(P)

Following Monniaux’s formulation of a finite sums abstraction [41], elements of ∆
need not be disjoint. While enforcing disjointness would simplify determining the most
probable points for policy evaluation (see Section 6.2), it would necessitate splitting of
probabilistic polyhedra when overlaps arise. Repeated splitting of already approximate
probabilistic polyhedra decreases their precision and can hurt performance by increas-
ing the number of regions to track during abstract interpretation.

We can characterize the condition of ∆ containing only the zero distribution, writ-
ten iszero(∆), via the condition that all of the member probabilistic polyhedra are
zero.

iszero(∆)
def
=
∧
P∈∆

iszero(P)

6.1 Abstract Semantics for Pn (P)
The semantics for the powerset abstraction we describe in this section is designed to
soundly approximate the concrete semantics.

3We write {Xi} as shorthand for a set of n elements of type X , for some n. We write {Xi}ni=1 when
the choice of n is important.

29



Theorem 25. For all δ, S,∆, if δ ∈ γPn(P)(∆) and 〈〈S〉〉∆ terminates, then [[S]]δ
terminates and [[S]]δ ∈ γPn(P)(〈〈S〉〉∆).

The proof for this theorem follows the same form as the corresponding soundness
theorem for probabilistic polyhedra (Theorem 6), via soundness of the individual ab-
stract operations in relation to their concrete versions. The full proof of this is given in
the companion technical report [36].

To bound the size of the set of probabilistic polyhedra that will arise from the
various operations that will follow, we introduce a simplification operation.

Definition 26. The powerset simplification transforms a set containing potentially
more than n elements into one containing no more than n, for n ≥ 1. The simplest
approach involves repeated use of abstract plus in the base domain P.

b{Pi}mi=1cn
def
=

{
{Pi}mi=1 if m ≤ n

b{Pi}m−2
i=1 ∪ {Pm−1 + Pm}cn otherwise

Lemma 27. γPn(P)(∆) ⊆ γPn(P)(b∆cm) where m ≤ n.

Note that the order in which individual probabilistic polyhedra are simplified has
no effect on soundness but may impact the precision of the resulting abstraction. We
explore the variation in precision due to these choices in Section 7.3.

Many of the operations and lemmas for the powerset domain are simple liftings
of the corresponding operations and lemmas for single probabilistic polyhedra. For
these operations (the first four, below) we simply list the definition; we elaborate on
the remaining four.

Forget fy(∆)
def
= {fy(P) : P ∈ ∆}

Project. ∆ � V
def
= {P � V : P ∈ ∆}

Assignment. ∆ [x→ E]
def
= {P [x→ E] : P ∈ ∆}

Scalar product. p ·∆ def
= {p · P : P ∈ ∆ ∧ ¬iszero(p · P)}

Conditioning Recall that for probabilistic polyhedra, conditioning P ∧ B is defined
in terms of logical expression evaluation for convex polyhedra, 〈〈B〉〉C. This operation
returns a convex polyhedron that contains at least the points in C that satisfy the logical
expression B . This operation is tight if B does not contain disjuncts. When B does
have disjuncts whose union does not define a convex region then the operation will be
approximate. Consider Example 2. The condition age = 20 ∨ age = 30 ∨ ... ∨ age =
60, were it be approximated using a single convex region, would be equivalent to the
condition age ≥ 20 ∨ age ≤ 60.

In the powerset domain we keep track of multiple convex regions hence can better
approximate the conditioning operation. The approach we take is to convert the logical
expression into a disjoint disjunctive normal form: ddnf (B)

def
= {B1, B2, · · · , Bm},

such that {σ : σ |= B} = {σ : σ |= B1 ∨ · · · ∨ Bm}, each disjunct Bi contains no
further disjunctions, and {σ : σ |= Bi ∧ Bj} = ∅ for all i 6= j (Bi are disjoint).
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Conditioning is thus defined as follows:

∆ ∧ B
def
= b{P ∧ Bi : P ∈ ∆ ∧ Bi ∈ ddnf (B) ∧ ¬iszero(P ∧ Bi)}cn

The powerset simplification here reduces the set of probabilistic polyhedra to no
more than n. Before the simplification, the number of probabilistic polyhedra could be
as large as |∆| · |ddnf (B)|. The number of disjuncts itself can be exponential in the
size of B .

Product The product operation is only required for the special uniform statement and
only applies to the product of a probabilistic set with a single probabilistic polyhedron.
∆ × P ′ def

= {P × P ′ : P ∈ ∆} (where we assume that fv(∆) ∩ fv(P ′) = ∅).

Plus The abstract plus operation involves simplifying the combined contributions
from two sets into one bounded set: ∆1 + ∆2

def
= b∆1 ∪∆2cn, whenever ¬iszero(∆1)

and¬iszero(∆2). Alternatively, if iszero(∆1) (or iszero(∆2)) then ∆1+∆2 is defined
to be identical to ∆2 (or ∆1).

The definition of abstract plus given above is technically sound but for an imple-
mentation it would make sense to assuming that ∆1 contains probabilistic polyhedra
that are somewhat more related to each other than those in ∆2. It is preferable to merge
regions that close together rather than those further apart. Therefore our implementa-
tion performs abstract plus heuristically as follows.

∆1 + ∆2 = b∆1cbn/2c ∪ b∆2cn−bn/2c
This may not always be the best grouping of probabilistic polyhedra to merge. There
is quite a lot of arbitrary choice that can be made in order to evaluate this heuristic or
the base definition of abstract plus without this heuristic.

Normalization Since in the Pn (P) domain the over(under) approximation of the
total mass is not contained in any single probabilistic polyhedron, the normalization
must scale each component of a set by the overall total. The minimum (maximum)
mass of a probabilistic polyhedron set ∆ = {P1, . . . , Pn} is defined as follows.

Mmin(∆)
def
=
∑n
i=1 mmin

i Mmax(∆)
def
=
∑n
i=1 mmax

i

Definition 28. The normalization a probabilistic polyhedra P1 relative to a probabilis-
tic polyhedron set ∆, written normal∆(P1), is the probabilistic polyhedron P2 defined
as follows whenever Mmin(∆) > 0.

pmin
2 = pmin

1 /Mmax(∆) smin
2 = smin

1

pmax
2 = pmax

1 /Mmin(∆) smax
2 = smax

1

mmin
2 = mmin

1 /Mmax(∆) C2 = C1

mmax
2 = mmax

1 /Mmin(∆)

Whenever Mmin(∆) = 0 the resulting P2 is defined as above but with pmax
2 = 1

and mmax
2 = 1.

Normalizing a set of probabilistic polyhedra is then defined as follows

normal(∆)
def
= {normal∆(P) : P ∈ ∆}
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6.1.1 Powersets of Intervals and Octagons

Following the probabilistic extensions to the interval and octagon domains described
in Section 5.5, we can also define powersets of probabilistic intervals and octagons:
Pn (I) is composed of at most n probabilistic intervals and Pn (O) is composed of at
most n probabilistic octagons. The operations have the same form as those described
above.

6.2 Policy Evaluation
Determining the bound on the probability of any state represented by a single proba-
bilistic polyhedron is as simple as checking the pmax value in the normalized version of
the probabilistic polyhedron. In the domain of probabilistic polyhedron sets, however,
the situation is more complex, as polyhedra may overlap and thus a state’s probability
could involve multiple probabilistic polyhedra. A simple estimate of the bound can be
computed by abstractly adding all the probabilistic polyhedra in the set, and using the
pmax value of the result.

Lemma 29. If δ ∈ γPn(P)(∆) and P1 =
∑
P∈∆ P then maxσ δ(σ) ≤ pmax

1 .

This approach has an unfortunate tendency to increase the max probability bound
as one increases the bound on the number of probabilistic polyhedra allowed. A more
complicated method, which is used in our implementation, computes a partition of the
polyhedra in the set into another set of disjoint polyhedra and determines the maximum
probable point among the representatives of each region in the partition. In order to
present this method precisely we begin with some definitions.

Definition 30. The maximum probability of a state σ according to a probabilistic poly-
hedron P1, written Pmax

1 (σ), is as follows.

Pmax
1 (σ)

def
=

{
pmax

1 if σ ∈ γC(C1)
0 otherwise

Likewise the maximum probability of σ according to a probabilistic polyhedron set
∆ = {Pi}, written ∆max (σ), is defined as follows.

∆max (σ)
def
=
∑
i

Pmax
i (σ)

A mere application of the various definitions allows one to conclude the following.

Remark 31. If δ ∈ γPn(P)(∆) then for every σ, δ(σ) ≤ ∆max (σ), and therefore
maxτ δ(τ) ≤ maxτ ∆max (τ).

Notice that in the case of a single probabilistic polyhedron, Pmax
1 (σ) = Pmax

1 (τ)
for every σ, τ ∈ γC(C1). That is, every supported state has the same maximum prob-
ability. On the other hand, this is not the case for sets of probabilistic polyhedra,
∆max (σ) is not necessarily equal to ∆max (τ), for supported states σ, τ ∈

⋃
Pi∈∆ γC(Ci),

or even for states σ, τ ∈ γC(Ci), supported by a single probabilistic polyhedron Pi ∈
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Figure 7: Example of a poly partition of two overlapping convex polyhedra (shaded),
resulting in 5 disjoint convex polyhedra (outlined).

∆. This is the case as there might be one set of probabilistic polyhedra in ∆ that
supports a state σ, while a different set supports τ .

Taking advantage of the polyhedra domain, we will produce a set of representative
points {σj}mj=1 with maxmj=1 ∆max (σj) = maxσ ∆max (σ). This set will thus let us
determine the maximum probability over all points, without having to look at all points.
To do this, we first need to define a linear partition.

Definition 32. A poly partition of a set of polyhedra {Pi}ni=1 is another set of polyhe-
dra {Lj}mj=1, usually of larger size, with the following properties.

1. γC(Li) ∩ γC(Lj) = ∅ for every i 6= j.

2. ∪mj=1γC(Lj) = ∪ni=1γC(Pi)

3. For every i, j, either γC(Li) ⊆ γC(Pj) or γC(Li) ∩ γC(Pj) = ∅.

We call any set R = {σj}mj=1 a representative set of partition L = {Lj}mj=1 when
the jth element σj ∈ R is in the concretization of the respective element Lj ∈ L; i.e.,
σj ∈ γC(Lj).

We can now determine the maximal probability using only representative points,
one from each piece of the poly partition.

Lemma 33. maxσ∈R ∆max (σ) = maxσ ∆max (σ) where L is a poly partition of ∆
and R is a representative set of L.

Note that the set of representatives R is not unique and the lemma holds for any
such set and the maximal state probability is the same, regardless of which set of repre-
sentatives is used, or even which poly partition is computed. Also note that the process
of producing the poly partition would be unnecessary if somehow we kept the regions
defined by probabilistic polyhedra in ∆ disjoint from each other, as they would already
define a poly partition. Doing so would simplify our task here, but would significantly
complicate matters in the abstract interpretation of a program, as well as reducing the
precision of the final result.

The process of producing a poly partition from a set of polyhedra is achieved via
repeated use of the linear partition operation for polyhedra, which splits two polyhedra
into disjoint pieces. Our implementation does this in the most naive way possible:
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we maintain a bag of polyhedra, splitting any overlapping pairs, until no overlapping
regions remain, as in the pseudo-code below.

poly-partition(Φ)
def
=

while ∃ C1, C2 ∈ Φ : ¬isempty(C1 uC C2)

Φ← (Φ− {C1, C2}) ∪ (C1 ↘↙ C2)

return Φ

We will write maxpp (∆) for maxσ ∆max (σ) to make explicit the method with
which this value can be computed according to the lemma above.

Notation 34. If ∆ is a probabilistic polyhedron set over variables V , and σ is a state
over variables V ′ ⊆ V , then ∆ ∧ σ def

= ∆ ∧ B where B =
∧
x∈V ′ x = σ(x).

Definition 35. Given some probabilistic polyhedron set ∆1 and statement S where
〈〈S〉〉∆1 terminates, let ∆2 = 〈〈S〉〉∆1 and ∆3 = ∆2 � L = {P ′i}. If for every σL ∈
γP(C)({C ′i}) with ¬iszero(∆2∧σL) we have ∆4 = (∆2|σL) � H and maxpp (∆4) ≤
t, then we write tsecuret(S,∆1).

Below we state the main soundness theorem for abstract interpretation using prob-
abilistic polyhedron sets. This theorem states that the abstract interpretation just de-
scribed can be used to soundly determine whether to accept a query.

Theorem 36. Let δ be an attacker’s initial belief. If δ ∈ γPn(P)(∆) and tsecuret(S,∆),
then S is threshold secure for threshold t when evaluated with initial belief δ.

Note that the process described in computing threshold security involves merg-
ing probabilistic polyhedra via the simplification operation (Definition 26); the order
in which these polyhedra are combined has no effect on soundness, but could affect
precision. We explore the variation possible in the precision due to ordering in Section
7.3. The heuristic used for simplification in the abstract plus operation aims to optimize
some of these choices; further optimizations are part of our ongoing work.

7 Experiments
We have implemented an interpreter for the language in Figure 2 based on the prob-
abilistic polyhedra powerset domain as well the simpler probabilistic domains con-
structed from the interval and octagon base domains. The manipulations of base do-
main regions are done using the Parma Polyhedra Library [6] (ppl-0.11.2). Counting
calculations are done using the LattE [21] tool (LattE macchiato 1.2-mk-0.9.3) in the
case of polyhedra and octagons. The trivial counting calculation for the interval do-
main we implemented ourselves as part of the abstract interpreter, which itself is writ-
ten in OCaml (3.12.0). While many of the abstract operations distribute over the set
of probabilistic regions and thus could be parallelized, our implementation is currently
single-threaded.

This section presents an experimental evaluation of our implementation on several
benchmark programs. Overall, the use of the octagonal and polyhedral domains re-
sults in running times ranging from a few seconds to a few minutes. Compared to
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enumeration-based approaches to probabilistic computation, using probabilistic poly-
hedra improves running times by up to 1–2 orders of magnitude. Intervals do even
better, with running times ranging from tens to hundreds of milliseconds, constituting
an additional 1–2 orders of magnitude improvement. For our particular experiments,
exact precision is reached by all domains if the bound on the number of regions is
sufficiently large.

Our experiments were conducted on a Mac Pro with two 2.26 GHz quad-core Xeon
processors using 16 GB of RAM and running OS X v10.6.7.

7.1 Benchmark Programs
We applied our implementation to several queries. The timings measure, for each
query, the construction of a pre-belief, the probabilistic evaluation of a query, and fi-
nally a policy check over all secret variables. We describe each query here, and show
the complete source code, pre-belief, and further details in Appendix A.

Birthday We benchmark the birthday queries described in Section 2:

• bday 1 The first birthday query (Example 1).

• bday 1+2+special The sequence of the first two birthday queries (Example 1
and then the same code, but with today increased by 1) followed by the special
birthday query (Example 2). Below we refer to this benchmark as the birthday
query sequence.

We consider small and large variants of these two queries: the former assumes the birth
year ranges from 1956 to 1992, while the latter uses the range 1910 to 2010.

Pizza This query evaluates whether a user might be interested in a local pizza parlor.
To do this, the code checks whether the user’s location is within a certain square area
and whether they match an age or current education criteria most associated with pizza-
eating habits (18-28 year old or currently undergrad or above). The modeled secret
variables thus include: the user’s birth year, the level of school currently being attended,
and their address latitude and longitude (scaled by 106 and represented as an integer).
The last two variables have large magnitudes. The true values used in the benchmark
were 39003178 and 76958199 for latitude and longitude, respectively.

Photo This query is a direct encoding of a real targeted advertisement that Facebook
includes on their information page [4]. The query itself checks whether the user is
female, engaged, and is in a certain age range, indicative of interest in (wedding) pho-
tography service. There are three secret variables in this example: gender, relationship
status, and birth year.

Travel This query is another adaptation of a Facebook advertisement case study [3],
based on a campaign run by a tourism agency. The aim of the query is to determine
whether the user lives in one of several relevant countries, speaks English, is over the
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Figure 8: Query evaluation comparison

age of 21, and has completed a high level of education. The secret variables thus
include four dimensions: the user’s country of residence, birth year, highest level of
completed education, and primary language.

Is Target Close, Who is Closer These queries were designed to demonstrate the
need for relational abstractions. They perform simple (Manhattan) distance calcula-
tions over points defined by 2D coordinates. Is Target Close checks whether an un-
known point is within some distance of a given point and Who is Closer determines
which of two unknown points is closer to a given point. The nature of these queries is
further discussed in Section 7.4 and their full specification is shown in Appendix B.

7.2 Comparison to Enumeration
Figure 8(a) illustrates the result of running the bday 1 (small) query using our imple-
mentation and one using Probabilistic Scheme [47], which is capable of sound prob-
ability estimation after partial enumeration. Each × plots prob-scheme’s maximum
probability value (the y axis)—that is, the probability it assigns to the most likely se-
cret state—when given a varying amount of time for sampling (the x axis). We can see
the precision improves steadily until it reaches the exact value of 1/259 at around 17
seconds. Each + plots our implementation’s maximum probability value when given
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an increasing number of probabilistic polyhedra; with a polyhedral bound of 2 (or
more), we obtain the exact value in less than one second. The timing measurements
are taken to be the medians of 20 runs.

The advantage of our approach is more evident in Figure 8(b) where we use the
same program but allow byear to span 1910 to 2010 rather than 1956 to 1992 (this is
bday 1 (large)). In this case prob-scheme makes little progress even after a minute.
Our approach, however, is unaffected by this larger state space and produces the exact
maximum belief in less than one second when using only 2 probabilistic polyhedra.

We can push the advantage much further with the use of the simpler interval do-
main which can compute the exact probabilities in both the smaller and larger birthday
examples, using only 2 intervals, in around 0.008 seconds. These benchmarks can be
seen in Figure 9, discussed shortly.

7.3 Performance analysis
Figures 9-13 summarize the performance results for all the benchmarks programs and
for each of the three base domains. The raw data producing these figures are found in
Table 1 in the appendix. The bottom graph of each figure zooms in on the results for
the interval domain which can also be seen in the upper graphs.

The timing benchmarks in the figures are based on 20 runs, the median of which is
denoted by one of three symbols: a box, a diamond, and a pentagon for the interval,
octagon, and polyhedron domains, respectively. The symbols are scaled based on the
precision in max probability, relative to exact, the analysis achieves; a tiny dot signi-
fies exact probability and increasing symbol size signifies worsening precision. Note,
however, that the sizes of the symbols are not proportional to precision. The vertical
gray boxes range from the 1st to 3rd quartiles of the samples taken while the vertical
lines outside of these boxes represent the full extent of the samples.

We discuss the performance and precision aspects of these results in turn.

Performance. Overall, the use of the octagonal base domain results in slightly im-
proved performance over the polyhedral base domain. The interval domain, however, is
much faster than both due to the simpler counting and base domain operations. Though
the performance gains from the use of octagons are meager, we note that it is likely they
can be greatly improved by implementing a octagon-specialized counting method in-
stead of using the general polyhedron counting tool (LattE).

As the number of base domain regions increases, the running time generally in-
creases, though there are exceptions to this trend. A good example can be seen with
intervals in Figure 10. Specifically, when there is no interval set size bound, the analy-
sis takes a less time than with a bound of 40 (and even produces a more precise answer).
In such situations the additional computational cost of manipulating a larger number of
regions is less than the cost that would have been incurred by having to merge them to
maintain some (large) bound.

In the cases of polyhedron and octagon base domains, the running time oddities are
due to the difficulty of accurately counting points in complex regions. We measured
that, when evaluating the various queries in Figures 9-13, 95% or more of the running
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Figure 9: birthday query sequence benchmarks

time is spent in LattE, performing counting. Figure 14 plots the running time of LattE
against the number of constraints used to define a polyhedron (we used the polyhedra
that arose when evaluating the above queries). Note that the y-axis is a log scale, and
as such we can see the running time is super-exponential in the number of constraints.
As such, overall running time is sensitive to the complexity of the polyhedra involved,
even when they are few in number.

It turns out that when merging to respect the total bound can result in complicated
shapes which then, unintuitively, increase the running time. Two very stark examples
of this phenomenon are seen for in the pizza and travel queries (Figures 11 and 13
respectively). With a region bound of one, the analysis of both these queries takes
much longer than with the bound of two; the large amount of region merging in these
instances resulted in a single, but highly complex region. Using octagons in both these
instances does not result in complex regions which explains the massive performance
improvement. These observations suggest a great deal of performance improvement
can be gained by simplifying the polyhedra if they become too complex.

Precision. The figures (and Table 1 in the appendix) generally show the trend that the
maximum belief improves (decreases) as the region bound increases, though there are
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Figure 10: birthday (large) query sequence benchmarks

exceptions. A good example appears in Figure 9 which depicts the performance of the
birthday query sequence; with a set size bound of 3, the analysis is able to produce the
exact max belief. Allowing 4 probabilistic polyhedra (or intervals, octagons), however,
does not produce the exact belief anymore. The same occurs in Figure 10 for the larger
state space bday sequence benchmark.

The data also demonstrate that, as expected, the use of polyhedra is more precise
then use of octagons which itself is more precise than the use of intervals. For the
birthday queries, this difference manifests itself rarely, in particular for the set size
bound of 20 and 25 in Figure 9. In the pizza query benchmarks, polyhedra provide
a precision advantage over the other two domains when the region set size bound is
between 5 and 10. Based on these sample queries, the precision advantage of using
polyhedra or octagons over intervals seems insignificant. This is due to a general lack,
in these queries, of conditionals that cannot be expressed exactly when using intervals
(or octagons) exactly. Section 7.4 shows two queries that demonstrate the precision
advantages of polyhedra and octagons more clearly.

Impact of merge order. Another reason for the the lack of a steady improvement of
precision as the region bound increases is due to order in which polyhedra are merged.
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Figure 11: pizza query benchmarks

That is, when simplifying a set of m probabilistic polyhedra to n < m requires that we
iteratively merge pairs of polyhedra until the bound is reached. But which pairs should
we use? The choice impacts precision. For example, if we have two largely overlapping
polyhedra, we would preserve more precision if we merge them rather than merging
one of them with some other, non-overlapping one. We used a deterministic strategy
for the benchmarks in this section, producing identical precision, though some timing
variations. The question is how well might we have done with a better strategy?

To test the precision variation possible due to these arbitrary choices, we analyzed
the birthday query sequence, for each interval set size bound, but with 200 different
random seeds for randomized merging decisions. The results can be seen in Figure 15.
The median max belief is included, as well as the lower and upper quartiles (shaded).
Note that we did not use the merging heuristic for the abstract plus operation described
in Section 6.1 for these measurements (but we do use it in the results given up to this
point).

Naturally there are few arbitrary choices to make when the set size bound is very
low, or very high. In the middle, however, there are many possibilities. Turning to
the figure, we can see the variation possible is significant except for when the set size
bound is at least 36 (at which point there is no merging occurring). For n ≤ 7 it is
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Figure 12: photo query benchmarks

more likely than not to conclude max belief is 1, with 1 being the median. On the other
hand, from as little as n = 2, it is possible to do much better, even computing the exact
belief (lowest sample for n = 3). This itself suggests that our heuristic for the merging
order in abstract plus is useful, as it managed to result in this exact max belief, against
all odds. Also, even though it did not produce exact beliefs for n > 3, it did a lot better
than the trivial median one would get by performing merging randomly. Nevertheless,
the merging order is an aspect of the implementation that has room for improvement,
we consider some options in Section 8.

From n = 8, the random merging order starts producing non-trivial results, on
average. Increasing n further makes it less and less likely to merge poorly; at n = 30
for example, no random merge order out of the 200 samples managed to do terribly,
all samples had belief below 0.01. Overall, the median max-belief is more or less
monotonically improving as n increases as one would expect.

An interesting feature of Figure 15 is the best max-belief achieved for each n (the
bottom mark of each column). This quantity seems to be getting worse from n = 3 all
the way to around n = 14 before it starts coming down again. We expect this is due to
two counteracting effects:

• Larger powerset size bound allows for more precise representation of distribu-
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Figure 13: travel query benchmarks
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Figure 15: birthday query sequence precision variation

tions, for some merging order.

• It is easier to find a good merging order if there are only a few options. For low
values of n, most merging orders are explored in the 200 samples, hence good
orders are found.

7.4 Relational queries
The examples presented to this point are handled well by the interval-based abstraction,
assuming a sufficient number of intervals are used. The simple interval-based abstrac-
tion does not work so well programs that introduce relational constraints on variables.
Such constraints can arise due to simple distance computations, which we would ex-
pect to be found in many useful queries. We provide examples of such computations
here (the full specification of the queries appears in Appendix B).

Consider an initial belief composed of two pairs of 2-dimensional coordinates,
specifying the location of two objects: (x1, y1), (x2, y2). The Is Target Close query
checks whether the first of the objects is within a specified distance d from a specified
coordinate (x, y). Distance is measured using Manhattan distance, that is |x − x1| +
|y − y1| ≤ d.

Notice that if the first object is indeed within d of the target coordinate, we learn a
relational constrains involving both x1 and y1, the coordinates of the first object:

x1 + y1 ≤ d+ x+ y ∧
x1 − y1 ≤ d+ x− y ∧
−x1 + y1 ≤ d− x+ y ∧
−x1 − y1 ≤ d− x− y

Intervals are incapable of exact representation of relational constraints like x1 +
y1 ≤ C. Octagons, however, are a suitable representation. Thus using our implemen-
tation, the Is Target Close query fails (that is, overapproximates the probability of all
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secret values to be 1) if interval base domain is used, regardless of the bound on number
of intervals used, but is exactly handled using only a few octagons.

The next query, Who Is Closer, determines which of the two given objects is closer
to the target: |x − x1| + |y − y1| ≤ |x − x2| + |y − y2|. The truth of this equation
implies the disjunction of 4 constraints. One among them is the below.

x1 + y1 + x2 + y2 ≤ 2 ∗ x+ 2 ∗ y ∧
x1 − y1 + x2 + y2 ≤ 2 ∗ x ∧
−x1 + y1 + x2 + y2 ≤ 2 ∗ y ∧
−x1 − y1 + x2 + y2 ≤ 0

While x and y can be treated as constants, such a constraint still involves four secret
dimensions, x1, y1, x2, y2 and hence cannot be represented exactly using an octagon,
which can express relational constraints of at most two dimensions. For this reason,
our implementation fails when octagons are used (no matter their number), whereas
the polyhedra-based domain performs exact analysis with just a few polyhedra.

It is important to mention that our implementation does not split regions unless
performing a conditioning operation. It might be beneficial in some cases to split an
interval into pieces so that their union is capable of better approximating relational
constraints. We are considering such options for future work but several aspects of our
implementation need to be improved to take advantage of this idea.

8 Discussion
This section considers the some of the tradeoffs, challenges, design alternatives, and
possibilities for future work on knowledge-based security policies and probabilistic
polyhedra.

8.1 Knowledge-based policies
Employing knowledge-based policies successfully requires maintaining a reasonable
estimate of queriers’ beliefs. Two difficulties that arise in doing so are (1) establishing
the initial belief, and (2) accounting for collusion among queriers. Here we discuss
these two issues, and suggest further applications of knowledge-based policies.

Initial belief. For P1 to enforce a knowledge-based policy on queries by P2 requires
that P1 estimate P2’s belief about the possible valuations of P1’s secret data. When
P2 has no particular knowledge of P1’s secrets, statistical demographic data can be
used; e.g., the US Census and other public sources could be used for personal informa-
tion. When P2 might have inside knowledge, P1 must expend more effort to account
for it. For example, in a military setting, estimating a coalition partner’s estimate of
one’s resources could be derived from shared information, and from the likelihood of
P2 having acquired illicit information. Our benchmarks largely considered personal,
private information, e.g., gender, age, level of education, etc. This information can be
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drawn from public sources (e.g., Facebook demographics [1]). However, the distribu-
tions we experimented with were oversimplifications of the actual, reported distribu-
tions: they were largely simple, uniform distributions. At present, the syntax of our
query language itself only allows specification of a single distribution. Of course, we
could permit users to more directly specify distributions of interest in a separate syntax.
A more interesting alternative is to define the initial distribution using a probabilistic
program employing conditioning based on observations, using the same mechanisms
already developed to determining whether to answer queries. This is done in languages
like IBAL [45] and Fun [11] and could be adapted to our setting.

If the initial belief estimate is (very) inaccurate, then P1 risks releasing informa-
tion to P2 contrary to his intended policy. To “hedge his bets” against this possibility,
he might choose to maintain a set of possible beliefs ∆, rather than a single belief
δ, and only release if the threshold was satisfied for every δ ∈ ∆. We return to this
idea in Section 9.3. In some sense we already do maintain multiple beliefs, as our im-
plementation models/abstracts powersets of probabilistic polyhedra, rather than single
polyhedra, for performance reasons. We leave to future work the exploration of the
practical implementation of this idea.

Collusion. Assuming that P maintains separate beliefs and thresholds for distinct
queriers Q1 and Q2, the possibility of collusion arises. Following our motivating ex-
ample in the Introduction, P ’s privacy would be thwarted if he shared only his birth day
with Q1 and only his birth year with Q2 but then Q1 and Q2 shared their information.
This problem is not unique to our work; the same problem would arise if P used an
access control policy to protect birth day and birth year in the same way — the policy
will be thwarted if Q1 and Q2 pool their information.

A simple approach to preventing this would be to model adversary knowledge glob-
ally, effectively assuming that all queriers share their query results; doing so would
prevent either Q1’s or Q2’s query (whichever was last). This approach is akin to hav-
ing a global privacy budget in differential privacy (see Section 9.3) or a single, global
access control policy and would obviously harm utility. Moreover, because our query
language includes probabilistic if statements, using a global belief introduces an addi-
tional, subtle complication: improbable results to non-deterministic queries (like Ex-
ample 2) can make an adversary more uncertain of the secret value than before seeing
the query’s output. If it happens that the agents purported to be colluding are in fact
not colluding then a global belief might under-approximate a non-colluding adversary’s
true level of knowledge.

One possible compromise would be to consider both the potential of collusion and
non-collusion by tracking a global belief and a set of individual beliefs. When consid-
ering a query, a rejection would be issued if either belief fails the policy check.

It is important to note that despite the possibility of a decrease certainty due to
probabilistic queries, rational adversaries, interested in maximizing their expectation
of guessing the secret value, will take all query outputs into account; unlikely query
outcomes are detrimental to certainty, but in expectation, potentially deceiving queries
increase chances of guessing.
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Further applications We have used the goal of decentralizing social networking ap-
plications as a motivator for our technique. But knowledge-based policies have other
applications as well. Here are four examples.

The first application is secure multiparty computation (SMC) [57]. Such computa-
tions allow a set of mutually distrusting parties to compute a function f of their private
inputs while revealing nothing about their inputs beyond what is implied by the result.
Depending on f , however, the result itself may reveal more information than parties
are comfortable with. Knowledge-based policies can generalized to this setting: each
party X can assess whether the other parties Yi could have secret values such that
f ’s result would exceed a knowledge threshold about X’s secret. We have explored
two methods for implementing the generalized knowledge threshold check; details are
elsewhere [34].

Another application is to protecting user browsing history. With the advent of “do
not track” guidelines that forbid storing cookies to track users’ browsing habits across
sites [23], service providers have turned to fingerprinting, which aims to identify a
user based on available browser characteristics [10]. We can protect these attributes
with knowledge-based policies, and enforce them by analyzing the javascript code
on browsed pages. The flexibility of knowledge-based policies is useful: with ac-
cess control we would have to choose, in advance, which attributes to reveal, but with
knowledge-based policies we can set a threshold on the entire tuple of the most sensi-
tive attributes and a web page can have access to whatever (legal) subset of information
it likes, for a better user experience.

A third application is to protect sensing capabilities. In particular, we can treat
sensor readings as samples from a random process parameterized by confidential char-
acteristics of the sensor. Each reading provides information about these parameters, in
addition to information from the reading itself. For example, suppose we want to share
mobility traces for traffic planning, but want to protect individuals’ privacy. We can
view each trace as a series of samples from a random process that determines the indi-
vidual’s location based on periodic factors, like previous location, time of day, day of
week, etc. [51]. We can define the sampling function in our simple language, involving
probabilistic choices over the hidden parameters. Belief tracking can be used to narrow
down the set of possible parameters to the model that could have produced the observed
traces; if the observer’s certainty about these parameters exceeds the threshold, then the
trace elements are not revealed. Note that trace obfuscation techniques are easily ac-
counted for—they can simply be composed with the sampling function and reasoned
about together.

Finally, we observe that we can simply track the amount of released information
due to an interaction as a degenerate case of enforcing knowledge-based policies. In
particular, we can set the pre-belief over some sensitive information to be the uniform
distribution, and set the threshold to be 1. In this case, we will always answer any
query, and at any time we can compute the entropy of the current belief estimate to
calculate the (maximum) number of bits leaked. This information may be used to
evaluate the susceptibility to attack by gauging the confidence an attacker might have
in their belief about secret information. It can be used to gauge what aspects of secret
information were of interest to the attacker, giving hints to as their motive, or maybe
even differentiating an honest querier from a malicious one. Tracking information in
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this manner is less expensive than enforcing threshold policies directly, since not all
possible outputs need to be considered, and carries no risk of a mis-estimate of the
pre-belief: the number of reported leaked bits will be conservatively high.

8.2 Improving the Performance of Probabilistic Polyhedra
While the performance of probabilistic polyhedra compares favorably to alternative
approaches, it can nevertheless be improved; this will be important for applying it to
the deployment scenarios listed above. Here we present several ideas for improving the
implementation that we hope to explore in future work.

Handling nominal values. Our probabilistic domains are based on polyhedra, oc-
tagons, and intervals, which are best for analyzing programs with numeric variables,
that contain linear conditionals. Most of the variables in the benchmark programs were
of the numeric variety. However, some were nominal, e.g., the variable encoding a
user’s language in the travel query, and these are unordered. Some variables are nomi-
nal but partially ordered, like education level in the pizza query. While we can encode
nominal values as integers, they may be better handled via other means, perhaps even
via naı̈ve enumeration. Handling of large quantities of nominal values could be per-
formed symbolically using some of the tools used by other probabilistic languages:
[12], graphical models [38], or factor graphs [11, 45]. Ideally abstract domains like
used in our system and ones better suited for nominal values, could be integrated (i.e.
via reduced product [18]) to effectively process programs that contain both types of
variables.

Region splitting. As the performance experiments in the previous section show, in-
tervals can be far more efficient than polyhedra. While a single interval may be more
imprecise than a single polyhedron, an interesting idea is consider splitting a polyhe-
dron into many intervals, aiming for the best of both worlds. The simplest means of
implementing this idea is to modify the handling of the uniform statement for the pow-
erset domains to result not in one, but several intervals. Though a single interval is
sufficient to exactly represent distributions produced by uniform, it would be insuffi-
cient if, later, the program introduces relations not representable by intervals.

The challenge is to find the right tradeoff—increasing the number of intervals will
slowly degrade performance and may hurt precision if we use an unfortunate merging
order at join points, as seen in Figure 15. Heuristically picking the right merge order is
a known challenge in abstract interpretation-based analyses.

Querier belief tracking. Recall a vital property of our knowledge-based policy en-
forcement is simulatability: the adversary has (or is allowed to have) all the information
necessary to decide the policy that governs its access, without interacting with the data
owner. As such, the computation of policy enforcement could, in theory, by done by the
querier. Naturally, they should not be trusted in this regard completely. One general
direction is to imagine the querier performing the entire computation, and providing
proof of the outcome, via something like proof-carrying code [43]. Alternatively, the
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querier could provide hints to the data owner to improve the speed of his computation.
For example, the querier could determine the optimal choices for merge order, and send
a digest of these choices.

9 Related work
We consider four areas of work related to ours: systems aimed at protecting access
to users’ private data; methods for quantifying information flow from general-purpose
programs; methods for privacy-preserving computation, most notably differential pri-
vacy; and finally approaches to performing general-purpose probabilistic computation.

9.1 Privacy enhancing network services
Several recent proposals have considered alternative service architectures for better en-
suring the privacy of individual participants. These systems tend to enforce access con-
trol policies. For example, PrPl [50] is a decentralized social networking infrastructure
aimed to permit participants to participate in social networking without losing owner-
ship of their data. The system uses Personal-Cloud Butler services to store data and
enforce access control policies. Persona [8] uses a centralized Facebook-style service,
but users can store personal data on distributed storage servers that use attribute-based
encryption. Access to data is granted to those parties who have the necessary attribute
keys. XBook [52] mediates social network data accesses by third-party application ex-
tensions. Privad [28] is a privacy-preserving advertising platform that, like our running
examples, runs the ad selection algorithm over the user’s data on the user’s platform.
Privad presumes that outputs of ad selection reveal little about the inputs.

Knowledge-based security policies generalize access control policies: if we main-
tain a belief estimate for each principal P , then the equivalent of granting P access to
data d is to just set P ’s knowledge threshold for d to 1; for principalsR who should not
have access, the threshold for d is 0. Knowledge-based policies afford greater flexibility
by allowing partial access, i.e., when a threshold less than 1. Moreover, as mentioned
in the introduction, we can set a policy on multiple data items, and thus grant more
access to one item than another (e.g., birth day and/or year) as long as knowledge of
the aggregate is controlled.

9.2 Quantified information flow
Others have considered how an adversary’s knowledge of private data might be in-
formed by a program’s output. Clark, Hunt, and Malacaria [13] define a static analysis
that bounds the secret information a straight-line program can leak in terms of equiv-
alence relations between the inputs and outputs. Backes et al. [7] automate the syn-
thesis of such equivalence relations and quantify leakage by computing the exact size
of equivalence classes. Köpf and Rybalchenko [32] extend this approach, improving
its scalability by using sampling to identify equivalence classes and using under- and
over-approximation to obtain bounds on their size. Mu and Clark [42] present a sim-
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ilar analysis that uses over-approximation only. In all cases, the inferred equivalence
classes can be used to compute entropy-based metrics of information leakage.

We differ from this work in two main ways. First, we implement a different security
criterion. The most closely related metric is conditional vulnerability V as proposed
by Smith [53], which can be defined using our notation as follows:

Definition 37. Let δ′ = [[S]]δ, where δ is the model of the querier’s initial belief.
Then query S is vulnerability threshold secure iff for

V =
∑

σL∈support(δ′�L)

(δ′ � L)(σL) · max
σH∈StateH

(δ′|σL � H)(σH)

we have V ≤ t for some threshold t.

The above definition is an expectation over all possible outputs σL, so unlikely
outputs have less influence. Our notion of threshold security (Definition 3), in contrast,
is equivalent to a bound on the following quantity:

V ∗ = max
σL∈support(δ′�L)

max
σH∈StateH

(δ′|σL � H)(σH)

This notion of security is strictly stronger as it considers each output individually:
if any output, however unlikely, would increase knowledge beyond the threshold, the
query would be rejected. For example, recall the query from Example 1 where the
secret data bday is (assumed by the querier to be) uniformly distributed; call this query
S1. According to Definition 37, the minimum acceptable threshold for which the query
would be considered safe is V = 7

365 ∗
1
7 + 358

365 ∗
1

358 = 2/365 ≈ 0.005, whereas
according to Definition 3, the minimum threshold is V ∗ = 1/7 ≈ 0.143.

The idea of strengthening of an entropy measure by eliminating the expectation has
been briefly considered by Köpf and Basin [31]. In their work this measure is proposed
as a stronger alternative, a choice ultimately dependent on the application. In our case,
however, the worst-case measure is absolutely necessary in order to prevent the leakage
of information when rejecting a query.

The other distinguishing feature of our approach is that we keep an on-line model
of adversary knowledge according to prior, actual query results. Once a query is an-
swered, the alternative possible outputs of this query no longer matter. To see the
benefit of this query-by-query approach, consider performing query S1 followed by a
query S2 which uses the same code as S1 (from Example 1) but has today = 265.
With our system and bday = 270 the answer to S1 is False and with the revised belief
the query S2 will be accepted as below threshold td = 0.2. If instead we had to model
this pair of queries statically they would be rejected because (under the assumption of
uniformity) the pair of outputs True,True is possible and implies bday ∈ {265, 266}
which would require td ≥ 0.5. Our approach also inherits from the belief-based ap-
proach the ability to model a querier who is misinformed or incorrect, which can arise
following the result of a probabilistic query or because of a change to the secret data
between queries [14]. We note these advantages come at the cost of maintaining on-line
belief models.

Our proposed abstract domains are useful beyond the application of belief-based
threshold security; e.g., they could be used to model uncertainty off-line (as in the
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above work) rather than beliefs on-line, with the advantage that they are not limited to
uniform distributions (as required by [7, 32]).

McCamant and Ernst’s FLOWCHECK tool [37] measures the information released
by a particular execution. However, it measures information release in terms of channel
capacity, rather than remaining uncertainty which is more appropriate for our setting.
For example, FLOWCHECK would report a query that tries to guess a user’s birthday
leaks one bit regardless of whether the guess was successful, whereas the belief-based
model (and the other models mentioned above) would consider a failing guess to con-
vey very little information (much less than a bit), and a successful guess conveying
quite a lot (much more than a bit).

9.3 Differential privacy
A recent thread of research has aimed to enforce the privacy of database queries. Most
notably, Dwork and colleagues have proposed differential privacy [24]: a differen-
tially private query Q over a database of individuals’ records is a randomized function
that produces roughly the same answer whether a particular individual’s data is in the
database or not. An appealing feature of this definition is that the querier’s knowledge
is not considered directly; rather, we are merely assured that Q’s answer will not dif-
fer by much whether a particular individual is in the database or not. On the other
hand, differentially private databases require that individuals trust the database curator,
a situation we would prefer to avoid, as motivated in the introduction.

We can compare differential privacy to our notion of threshold security by recasting
the differential privacy definition into the form of an adversarial privacy definition,
which was formulated by Rastogi and Suciu to compare their own privacy definition
on databases to differential privacy [48]. Rastogi and Suciu’s definition is in terms
of the presence or absence of a record in a database, whereas our notion is defined
on secret states over variables in H . To bridge this gap suppose that, without loss
of generality, variables x ∈ H range over {0, 1}, and we say a variable x is “in a
state” σ when σ(x) = 1. (We can always encode an integer i as a sequence of bits.)
Define δ({x1, ..., xn}) to be the probability of all states σ such that σ(xi) = 1 for all
1 ≤ i ≤ n; i.e.,

δ({x1, ..., xn})
def
=

∑
σ|σ(x1)=1∧...∧σ(xn)=1

δ(σ)

Then we can state adversarial privacy as follows.

Definition 38 (Adversarial Privacy). Given a query statement S , let O ⊆ StateL∪H
be the set of all possible output states of S (over some set of secret variables H and
public variables L), and ∆H ⊆ DistH be a set of distributions over secret states. We
say that program S is ε-adversarially private w.r.t. ∆H iff for all adversary beliefs
δH ∈ ∆H , all secret variables x ∈ H , and all possible outputs σo ∈ O, that δH({x}) ≤
eε δ′H({x}). Here, δ′H = ([[S ]](δH × σ̇L))|σo � H; that is, it is the revised adversary
belief after seeing that public output state of S is σo.

This definition says that query S is acceptable when the output of S increases only
by a small multiplicative factor an adversary’s certainty that some variable x is in the
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secret input state, for all adversaries whose prebeliefs are characterized by ∆H . Ras-
togi and Suciu show that defining ∆H to be the class of planar, total sub-modular
(or PTLM ) distributions renders an adversarial privacy definition equivalent to dif-
ferential privacy. Among other conditions, PTLM distributions require fixed-sized
databases (which comes by construction in our setting), and require the probability of
one tuple’s presence to not be positively correlated with another’s. We can transfer this
latter condition to our setting by requiring that for all δ ∈ ∆H , and all x1, x2 ∈ H , we
have δ({x1})δ({x2}) ≤ δ({x1, x2}).

Comparing Definition 38 to Definition 3 we can see that the former makes a relative
assertion about the increased certainty of any one of a set of possible adversarial beliefs,
while the latter makes an absolute assertion about the certainty of a single adversarial
belief. The absolute threshold of our definition is appealing, as is the more flexible
prebelief, which allows positive correlations among state variables. On the other hand,
our definition assumes we have correctly modeled the adversary’s belief. While this is
possible in some cases, e.g., when demographic information is available, differential
privacy is appealing in that it is robust a much larger number of adversaries, i.e., all
those whose prebeliefs are in PTLM .

Unfortunately, this strong privacy guarantee seems to come at strong cost to utility.
For example, deterministic queries are effectively precluded, eliminating some possibly
useful applications. For the application of social networks, Machanavajjhala et al. [33]
have shown that good private social recommendations are feasible only for a small sub-
set of the users in the social network or for a lenient setting of privacy parameters. We
can see the utility loss in our motivating scenario as well. Consider the birthday query
from Example 1. Bob’s birthday being/not being in the query range influences the out-
put of the query only by 1 (assuming yes/no is 1/0). One could add an appropriate
amount of (Laplacian) noise to the query answer to hide what the true answer was and
make the query differentially private. However, this noise would be so large compared
to the original range {0, 1} that the query becomes essentially useless—the user would
be receiving a birthday announcement most days.4

By contrast, our approach permits answering (deterministic or randomized) queries
exactly if the release of information is below the threshold. Moreover, by tracking
beliefs between queries, there is no artificial limit on the number of queries since we
can track the released information exactly. Differential privacy imposes an artificial
limit on the number of queries because the post-query, revised beliefs of the adversary
are not computed. Rather, each query conservatively adds up to ε to an adversary’s
certainty about a tuple, and since the precise release is not computed, we must assume
the worst. Eventually, performing further queries will pose too great of a risk.

As mentioned in the previous section, we could gain some of the privacy advantages
of differential privacy by modeling a (larger) set of beliefs rather than a single one.
Our abstractions P and Pn (P) already model sets of distributions, rather than a single
distribution, so it remains interesting future work to exploit this representation toward
increasing privacy.

4By our calculations, with privacy parameter ε = 0.1 recommended by Dwork [24], the probability the
query returns the correct result is approximately 0.5249.

51



9.4 Probabilistic programming
The core of our methodology relies on probabilistic computation. A variety of tools
exist for specifying random processes as computer programs and performing inference
on them.

Implementations based on partial sampling [26, 44] or full enumeration [47] of
the state space are unsuitable in our setting. Such tools are either too inefficient or
too imprecise. Works based on smarter representations of probability distributions are
promising alternatives. Projects based on algebraic decision diagrams [12], graphical
models [38], and factor graphs [11, 45] translate programs into convenient structures
and take advantage of efficient algorithms for their manipulation or inference.

Our implementation for probabilistic computation and inference differs from exist-
ing works in two main ways. Firstly, we are capable of approximation and hence can
trade off precision for performance, while maintaining soundness in terms of a strong
security policy. The second difference is the nature of our representation of probability
distributions. Our work is based on numerical abstractions: intervals, octagons, and
polyhedra. These abstractions are especially well suited for analysis of imperative pro-
grams with numeric variables and linear conditionals. Other probabilistic languages
might serve as better choices when nominal, rather than numeric, variables are used in
queries. The comparative study of the power and effectiveness of various representa-
tions in probabilistic computation is a topic of our ongoing research.

We are not the first to propose probabilistic abstract interpretation. Monniaux [41]
gives an abstract interpretation for probabilistic programs based on over-approximating
probabilities of points. Di Pierro describes abstract interpretation for probabilistic
lambda calculus [22]. Smith [54] describes probabilistic abstract interpretation for
verification of quantitative program properties. Cousot [20] unifies these and other
probabilistic program analysis tools. However, these do not deal with sound distribu-
tion conditioning, the unique element of our approach, which is crucial for belief-based
information flow analysis.

10 Conclusion
This paper has explored the idea of knowledge-based security policies: given a query
over some secret data, that query should only be answered if doing so will not increase
the querier’s knowledge above a fixed threshold. We enforce knowledge-based poli-
cies by explicitly tracking a model of a querier’s belief about secret data, represented
as a probability distribution, and we deny any query that could increase knowledge
above the threshold. Our denial criterion is independent of the actual secret, so denial
does not leak information. We implement query analysis and belief tracking via ab-
stract interpretation using domains of powersets of probabilistic polyhedra, octagons,
and intervals. Compared to typical approaches to implementing belief revision, our
implementation using this domain is more efficient and scales better.
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[42] Chunyan Mu and David Clark. An interval-based abstraction for quantifying
information flow. Electronic Notes in Theoretical Computer Science, 253(3):119–
141, 2009.

[43] George C. Necula. Proof-carrying code. In Proceedings of the ACM SIGPLAN
Conference on Principles of Programming Languages (POPL), pages 106–119,
1997.

[44] Sungwoo Park, Frank Pfenning, and Sebastian Thrun. A probabilistic language
based on sampling functions. ACM Transactions on Programming Languages
and Systems (TOPLAS), 31(1):4:1–4:46, 2008.

[45] Avi Pfeffer. The design and implementation of IBAL: A general-purpose proba-
bilistic language. In Lise Getoor and Benjamin Taskar, editors, Statistical Rela-
tional Learning. MIT Press, 2007.

[46] Corneliu Popeea and Wei-ngan Chin. Inferring disjunctive postconditions. In
Proceedings of the Asian Computing Science Conference (ASIAN), 2006.

[47] Alexey Radul. Report on the probabilistic language Scheme. In Proceedings of
the Dynamic Languages Symposium (DLS), 2007.

[48] Vibhor Rastogi, Michael Hay, Gerome Miklau, and Dan Suciu. Relationship pri-
vacy: output perturbation for queries with joins. In Proceedings of the Symposium
on Principles of Database Systems (PODS), 2009.

[49] Alfredo Rial and George Danezis. Privacy-preserving smart metering. In Pro-
ceedings of the Workshop on Privacy in the Electronic Society (WPES), 2011.

[50] Seok-Won Seong, Jiwon Seo, Matthew Nasielski, Debangsu Sengupta, Sudheen-
dra Hangal, Seng Keat Teh, Ruven Chu, Ben Dodson, and Monica S. Lam. PrPl:
a decentralized social networking infrastructure. In Proceedings of the Workshop
on Mobile Cloud Computing & Services: Social Networks and Beyond, 2010.
Invited Paper.

56



[51] Reza Shokri, George Theodorakopoulos, Jean-Yves Le Boudec, and Jean-Pierre
Hubaux. Quantifying Location Privacy. In Proceedings of the IEEE Symposium
on Security and Privacy (S&P), pages 247–262, 2011.

[52] Kapil Singh, Sumeer Bhola, and Wenke Lee. xBook: Redesigning privacy control
in social networking platforms. In Proceedings of the USENIX Security Sympo-
sium, 2009.

[53] Geoffrey Smith. On the foundations of quantitative information flow. In Pro-
ceedings of the Conference on Foundations of Software Science and Computation
Structures (FoSSaCS), 2009.

[54] Michael J. A. Smith. Probabilistic abstract interpretation of imperative programs
using truncated normal distributions. Electronic Notes in Theoretical Computer
Science, 220(3):43–59, 2008.

[55] Latanya Sweeney. Simple demographics often identify people uniquely. Techni-
cal Report LIDAP-WP4, Carnegie Mellon University, School of Computer Sci-
ence, Data Privacy Laboratory, 2000.

[56] David Worthington. Mypace user data for sale. PC World on-line, March
2010. http://www.pcworld.com/article/191716/myspace_user_data_

for_sale.html.

[57] Andrew Chi-Chih Yao. How to generate and exchange secrets. In Proceedings
of the Annual Symposium on Foundations of Computer Science, pages 162–167,
1986.

A Example queries
We provide here the queries and prebeliefs we used for the experiments in Section 7.
The queries are described as functions from some set of inputs to some set of outputs.
The exact syntax is as follows.

querydef queryname in1 · · · inn → out1 · · · outm :
querybody

Query definitions that follow sometimes include pre-processing statements of the
form:

#define x = exp

Such statements result in any occurrence of a variable x being replaced by the expres-
sion exp. This is used for convenience to refer to common expressions without actually
requiring the analysis to track additional variables/dimensions.
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To specify a query invocation we use the following syntax.

query queryname :
in1 := val1;
· · ·
inn := valn

Each experiment must also specify the values of the secrets being queried, and the
querier’s prebelief. Each specification is a merely a program that sets the values of these
variables. For the actual secret values this program begins with the declaration secret;
the resulting state of executing program is taken to be the secret state. The program
to set the prebelief begins belief and has the same format; note that this program will
use pif or uniform x n1 n2 to give secrets different possible values with different
probabilities.

We now give the content of the queries used in the experiments.

A.1 Birthday
For the small stateset size birthday experiments we used the following secret and pre-
belief.

secret :

s bday := 270 ;
s byear := 1980

belief :

uniform s bday 0 364 ;
uniform s byear 1956 1992

The two queries used were as follows.

querydef bday : c day → out

if s bday ≥ c day ∧ c day + 7 > s bday then
out := 1

else
out := 0

querydef spec : c year → out

#define age = c year − s byear
if age = 10 ∨ age = 20 ∨ age = 30 ∨ age = 40
∨ age = 50 ∨ age = 60 ∨ age = 70 ∨ age = 80
∨ age = 90 ∨ age = 100 then
out := 1

else
out := 0 ;

pif 1/10 then
out := 1

The statistics described in comparison to the enumeration approach (Section 7.2)
include the time spent processing this initial setup as well as time processing one birth-
day query. Figure 10 benchmarks two bday queries followed by a spec year query.
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• A single bday query alone.
query bday :

c day := 260

• Two bday queries followed by a spec query.

query bday :

c day := 260

query bday :

c day := 261

query spec :

c year := 2011

A.2 Birthday (large)
For the larger statespace birthday example we used the following secret and prebelief
generators.

secret :

s bday := 270 ;
s byear := 1980

belief :

uniform s bday 0 364 ;
uniform s byear 1910 2010

The queries used were identical to the ones for the smaller statespace birthday example.
For our benchmarks we analyzed the vulnerability of the pair of secrets s bday, s byear.

A.3 Pizza
The pizza example is slightly more complicated, especially in the construction of the
prebelief. This example models a targeted Facebook advertisement for a local pizza
shop. There are four relevant secret values. The level of school currently being at-
tended by the Facebook user is given by s_in_school_type, which is an integer
ranging from 0 (not in school) to 6 (Ph.D. program). Birth year is as before and
s_address_lat and s_address_long give the latitude and longitude of the user’s
home address (represented as decimal degrees scaled by a factor of 106 and converted
to an integer).

The initial belief models the fact that each subsequent level of education is less
likely and also captures the correlation between current educational level and age. For
example, a user is given an approximately 0.05 chance of currently being an under-
graduate in college, and college attendees are assumed to be born no later than 1985
(whereas elementary school students may be born as late as 2002).
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secret :

s in school type := 4 ;
s birth year := 1983 ;
s address lat := 39003178 ;
s address long := −76958199

belief :

pif 4/24 then
uniform s in school type 1 1 ;
uniform s birth year 1998 2002

else
pif 3/19 then

uniform s in school type 2 2 ;
uniform s birth year 1990 1998

else
pif 2/15 then

uniform s in school type 3 3 ;
uniform s birth year 1985 1992

else
pif 1/12 then

uniform s in school type 4 4 ;
uniform s birth year 1980 1985

else
uniform s in school type 0 0 ;
uniform s birth year 1900 1985 ;

uniform s address lat 38867884 39103178 ;
uniform s address long −77058199 − 76825926

The query itself targets the pizza advertisement at users who are either in college
or aged 18 to 28, while living close to the pizza shop (within a square region that is
2.5 miles on each side and centered on the pizza shop). If this condition is satisfied,
then the query returns 1, indicating that the ad should be displayed. The full text of the
query is given below.

querydef pizza : → out
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#define age = 2010− s birth year
#define lr lat = 38967884
#define ul lat = 39003178
#define lr long = −76958199
#define ul long = −76925926
if s in school type ≥ 4 then
in school := 1

else
in school := 0 ;

if age ≥ 18 ∧ age ≤ 28 then
age criteria := 1

else
age criteria := 0 ;

if s address lat ≤ ul lat
∧ s address lat ≥ lr lat
∧ s address long ≥ lr long
∧ s address long ≤ ul long

then
in box := 1

else
in box := 0 ;

if (in school = 1 ∨ age criteria = 1)
∧ in box = 1 then
out := 1

else
out := 0

A.4 Photo
The photo query is a direct encoding of a case study that Facebook includes on their
advertising information page [4]. The advertisement was for CM Photographics, and
targets offers for wedding photography packages at women between the ages of 24
and 30 who list in their profiles that they are engaged. The secret state consists of
birth year, as before, gender (0 indicates male, 1 indicates female), and “relationship
status,” which can take on a value from 0 to 9. Each of these relationship status values
indicates one of the status choices permitted by the Facebook software. The example
below involves only four of these values, which are given below.

0 No answer

1 Single

2 In a relationship

3 Engaged

The secret state and prebelief are as follows.

secret :
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s birth year := 1983 ;
s gender := 0 ;
s relationship status := 0

belief :

uniform s birth year 1900 2010 ;
uniform s gender 0 1 ;
uniform s relationship status 0 3

The query itself is the following.

querydef cm advert : → out

#define age = 2010− s birth year
if age ≥ 24 ∧ age ≤ 30 then
age sat := 1

else
age sat := 0 ;

if s gender = 1
∧ s relationship status = 3
∧ age sat = 1 then
out := 1

else
out := 0

A.5 Travel
This example is another Facebook advertising case study [3]. It is based on an ad cam-
paign run by Britain’s national tourism agency, VisitBritain. The campaign targeted
English-speaking Facebook users currently residing in countries with strong ties to the
United Kingdom. They further filtered by showing the advertisement only to college
graduates who were at least 21 years of age.

We modeled this using four secret values: country, birth year, highest completed
education level, and primary language. As with other categorical data, we represent
language and country using an enumeration. We ranked countries by number of Face-
book users as reported by socialbakers.com. This resulted in the US being country
number 1 and the UK being country 3. To populate the list of countries with “strong
connections” to the UK, we took a list of former British colonies. For the language
attribute, we consider a 50-element enumeration where 0 indicates “no answer” and 1
indicates “English” (other values appear in the prebelief but are not used in the query).

secret :

country := 1 ;
birth year := 1983 ;
completed school type := 4 ;
language := 5

belief :
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uniform country 1 200 ;
uniform birth year 1900 2011 ;
uniform language 1 50 ;
uniform completed school type 0 5

querydef travel : → out

#define age = 2010− birth year
if country = 1 ∨ country = 3
∨ country = 8 ∨ country = 10
∨ country = 18 then
main country := 1

else
main country := 0 ;

if country = 169 ∨ country = 197
∨ country = 194 ∨ country = 170
∨ country = 206 ∨ country = 183
∨ country = 188 then
island := 1

else
island := 0 ;

if language = 1
∧ (main country = 1 ∨ island = 1)
∧ age ≥ 21
∧ completed school type ≥ 4 then
out := 1

else
out := 0

B Relational Queries
The two queries below, is target close and who is closer introduce relations be-
tween variables after revision, even though the example initial belief had no such re-
lations. The initial belief stipulates the location of 2 objects is somewhere within a
rectangular region. The is target close query determines if a given location is within
dist of the first object, measured using Manhattan distance. This query introduces
relations between only 2 variables (latitude and longitude) which can be exactly repre-
sented using octagons but cannot using intervals.

The who is closer query performs a similar computation, but instead determines
which of the two objects in the initial belief is closer to the new target location. The post
belief can be handled by use of polyhedra, but not octagons, as it introduces relation-
ships between more than 2 variables (latitudes and longitudes of 2 different objects).

belief :

uniform loc lat1 29267245 36332852 ;
uniform loc long1 41483216 46405563 ;
uniform loc lat2 29267245 36332852 ;
uniform loc long2 41483216 46405563
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querydef is target close : target location lat target location long dist → is close

is close := 0 ;
dist lat := loc lat1− target location lat ;
dist long := loc long1− target location long ;
if dist lat < 0 then
dist lat := −1× dist lat ;

if dist long < 0 then
dist long := −1× dist long ;

if dist lat+ dist long ≤ dist then
is close := 1

querydef who is closer : target location lat target location long → who closer

diff lat1 := loc lat1− target location lat ;
diff long1 := loc long1− target location long ;
diff lat2 := loc lat2− target location lat ;
diff long2 := loc long2− target location long ;
if diff lat1 < 0 then
diff lat1 := −1× diff lat1 ;

if diff long1 < 0 then
diff long1 := −1× diff long1 ;

if diff lat2 < 0 then
diff lat2 := −1× diff lat2 ;

if diff long2 < 0 then
diff long2 := −1× diff long2 ;

dist1 := diff long1 + diff lat1 ;
dist2 := diff long2 + diff lat2 ;
if dist1 ≤ dist2 then
who closer := 0

else
who closer := 1

C Benchmark Results
Table 1 tabulates performance results for all of the benchmark programs, for each possi-
ble base domain (intervals, octagons, and polyhedra labeled 2, 3, and D respectively).
Each column is the maximum size of the permitted powerset, whereas each grouping
of rows contains, respectively, the wall clock time in seconds (median of 20 runs), the
running time’s semi-interquartile range (SIQR) with the number of outliers in paren-
theses (which are defined to be the points 3 × SIQR below the first quartile or above
the third), and the max belief computed (smaller being more accurate).
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1 2 3 4 5 6 7 8 9 10 15 20 25 30 35 40 ∞

bday 1

2
0.008
0.000(3)
1

0.008
0.004(3)
0.0039

0.009
0.000(1)
0.0039

0.009
0.000(3)
0.0039

0.009
0.000(2)
0.0039

0.009
0.002(4)
0.0039

0.009
0.000(3)
0.0039

0.009
0.000(3)
0.0039

0.009
0.000(2)
0.0039

0.009
0.000(2)
0.0039

0.009
0.000(2)
0.0039

0.009
0.000(2)
0.0039

0.009
0.000(3)
0.0039

0.009
0.000(3)
0.0039

0.009
0.002(4)
0.0039

0.009
0.000(4)
0.0039

0.009
0.006(3)
0.0039

3
0.484
0.011(3)
1

0.443
0.012(3)
0.0039

0.530
0.018(2)
0.0039

0.524
0.020(3)
0.0039

0.529
0.015(3)
0.0039

0.524
0.012(3)
0.0039

0.538
0.073(4)
0.0039

0.533
0.024(4)
0.0039

0.537
0.325(2)
0.0039

0.532
0.036(3)
0.0039

0.524
0.010(2)
0.0039

0.530
0.164(3)
0.0039

0.539
0.035(3)
0.0039

0.528
0.007(2)
0.0039

0.540
0.021(3)
0.0039

0.529
0.010(2)
0.0039

0.537
0.014(1)
0.0039

D
0.713
0.487(0)
1

0.688
0.020(2)
0.0039

0.744
0.016(4)
0.0039

0.745
0.022(4)
0.0039

0.740
0.549(0)
0.0039

0.744
0.605(0)
0.0039

0.734
0.015(2)
0.0039

0.737
0.045(2)
0.0039

0.747
0.059(4)
0.0039

0.732
0.039(4)
0.0039

0.771
0.480(0)
0.0039

0.745
0.054(4)
0.0039

0.750
0.203(3)
0.0039

0.736
0.022(4)
0.0039

0.760
0.791(0)
0.0039

0.742
0.322(3)
0.0039

0.744
0.026(3)
0.0039

bday 1+2+special

2
0.478
0.001(3)
1

0.477
0.005(3)
1

0.489
0.002(1)
3.84e-4

0.490
0.002(1)
4.22e-4

0.492
0.002(1)
4.22e-4

0.494
0.003(3)
4.22e-4

0.496
0.002(2)
4.22e-4

0.499
0.002(3)
8.06e-4

0.500
0.001(2)
8.06e-4

0.504
0.002(2)
8.06e-4

0.514
0.002(2)
4.60e-4

0.530
0.002(1)
0.0013

0.537
0.002(1)
0.0011

0.539
0.002(3)
9.82e-4

0.522
0.003(2)
4.22e-4

0.512
0.003(2)
3.84e-4

0.514
0.007(2)
3.84e-4

3
2.189
0.618(1)
1

2.286
0.787(0)
1

3.453
0.964(0)
3.84e-4

3.927
0.906(0)
4.22e-4

4.969
0.941(0)
4.22e-4

4.463
1.650(0)
4.22e-4

4.007
0.861(0)
4.22e-4

4.652
1.701(0)
8.06e-4

5.489
1.856(0)
8.06e-4

4.043
1.552(0)
8.06e-4

6.278
1.331(0)
4.60e-4

6.625
1.420(0)
0.0013

5.559
1.588(0)
0.0011

7.361
1.702(0)
9.82e-4

5.797
0.818(3)
4.22e-4

5.025
1.452(0)
3.84e-4

5.812
1.909(0)
3.84e-4

D
4.578
0.856(0)
1

4.767
1.024(0)
1

6.292
0.958(0)
3.84e-4

4.575
1.160(1)
4.22e-4

6.510
1.549(0)
4.22e-4

6.391
2.029(0)
4.22e-4

5.875
1.587(0)
4.22e-4

7.404
1.899(0)
8.06e-4

7.722
1.987(0)
8.06e-4

7.777
2.595(0)
8.06e-4

7.763
2.010(0)
4.60e-4

8.233
2.177(0)
4.60e-4

7.532
1.896(0)
4.60e-4

6.681
1.705(0)
4.60e-4

9.821
1.605(0)
4.22e-4

6.512
0.890(1)
3.84e-4

6.800
1.674(0)
3.84e-4

bday large 1

2
0.008
0.000(2)
1

0.008
0.000(1)
0.0014

0.009
0.000(1)
0.0014

0.009
0.000(3)
0.0014

0.009
0.000(3)
0.0014

0.009
0.000(3)
0.0014

0.009
0.000(4)
0.0014

0.009
0.000(2)
0.0014

0.009
0.000(2)
0.0014

0.009
0.000(4)
0.0014

0.009
0.000(3)
0.0014

0.009
0.000(1)
0.0014

0.009
0.000(2)
0.0014

0.009
0.000(4)
0.0014

0.009
0.000(2)
0.0014

0.009
0.000(4)
0.0014

0.009
0.000(2)
0.0014

3
0.500
0.035(4)
1

0.470
0.273(1)
0.0014

0.552
0.549(0)
0.0014

0.546
0.510(1)
0.0014

0.533
0.037(4)
0.0014

0.551
0.466(0)
0.0014

0.535
0.041(4)
0.0014

0.536
0.041(3)
0.0014

0.541
0.258(2)
0.0014

0.532
0.038(2)
0.0014

0.535
0.065(4)
0.0014

0.541
0.063(4)
0.0014

0.535
0.019(3)
0.0014

0.538
0.021(3)
0.0014

0.531
0.020(2)
0.0014

0.533
0.016(1)
0.0014

0.550
0.066(4)
0.0014

D
0.693
0.027(4)
1

0.699
0.024(1)
0.0014

0.747
0.397(2)
0.0014

0.757
0.307(2)
0.0014

0.736
0.023(4)
0.0014

0.733
0.025(4)
0.0014

0.739
0.057(4)
0.0014

0.735
0.015(3)
0.0014

0.754
0.513(0)
0.0014

0.791
0.658(0)
0.0014

0.742
0.017(3)
0.0014

0.757
0.283(3)
0.0014

0.756
0.034(3)
0.0014

0.740
0.263(4)
0.0014

0.742
0.494(0)
0.0014

0.734
0.027(3)
0.0014

0.728
0.013(1)
0.0014

bday large 1+2+special

2
0.483
0.001(2)
1

0.482
0.001(1)
1

0.497
0.001(1)
1.47e-4

0.499
0.002(2)
1.61e-4

0.500
0.001(2)
1.61e-4

0.501
0.002(2)
1.61e-4

0.505
0.003(1)
1.61e-4

0.508
0.001(2)
3.08e-4

0.509
0.001(2)
3.08e-4

0.513
0.003(4)
3.08e-4

0.528
0.002(2)
1.76e-4

0.542
0.001(1)
3.08e-4

0.554
0.002(2)
3.08e-4

0.567
0.002(3)
3.08e-4

0.572
0.002(1)
1.76e-4

0.594
0.004(1)
3.08e-4

0.556
0.001(4)
1.47e-4

3
4.860
1.207(0)
1

5.122
1.464(0)
1

7.126
1.636(0)
1.47e-4

7.966
1.643(0)
1.61e-4

7.250
1.646(0)
1.61e-4

5.742
0.904(3)
1.61e-4

8.254
2.613(0)
1.61e-4

5.980
1.626(0)
3.08e-4

7.855
1.409(1)
3.08e-4

6.810
1.729(0)
3.08e-4

10.32
1.968(0)
1.76e-4

8.887
2.293(0)
3.08e-4

9.578
3.165(0)
3.08e-4

8.262
1.696(0)
3.08e-4

11.77
2.673(0)
1.76e-4

11.16
3.067(0)
3.08e-4

13.52
2.109(2)
1.47e-4

D
5.769
1.414(0)
1

4.850
0.841(2)
1

10.90
2.680(0)
1.47e-4

10.81
2.000(0)
1.61e-4

8.010
1.766(1)
1.61e-4

8.017
2.388(0)
1.61e-4

11.45
2.102(0)
1.61e-4

10.73
2.191(0)
3.08e-4

11.71
1.642(1)
3.08e-4

10.26
2.011(0)
3.08e-4

12.76
1.474(1)
1.76e-4

15.01
2.102(1)
3.08e-4

13.89
1.359(0)
3.08e-4

14.73
1.598(1)
3.08e-4

16.16
1.509(1)
1.76e-4

16.95
1.509(2)
3.08e-4

17.91
1.140(0)
1.47e-4

pizza

2
0.060
0.002(4)
1

0.071
0.000(3)
1

0.086
0.000(3)
1

0.100
0.000(3)
1.63e-9

0.117
0.001(3)
1

0.135
0.001(4)
4.60e-10

0.175
0.003(4)
4.60e-10

0.226
0.005(3)
2.14e-10

0.182
0.001(3)
2.14e-10

0.272
0.000(3)
2.14e-10

0.212
0.005(3)
1.08e-10

0.289
0.001(3)
6.00e-11

0.368
0.001(2)
6.00e-11

0.348
0.001(1)
6.00e-11

0.258
0.001(1)
6.00e-11

0.278
0.001(1)
6.00e-11

0.279
0.001(3)
6.00e-11

3
19.07
1.780(0)
1

12.15
1.573(0)
1

18.83
1.331(0)
1

14.29
1.640(1)
1.63e-9

26.41
2.097(0)
1

16.72
1.233(0)
4.60e-10

29.92
0.808(1)
4.60e-10

27.49
0.731(0)
2.14e-10

21.08
1.553(0)
2.14e-10

25.93
1.044(0)
2.14e-10

24.36
0.654(2)
1.08e-10

29.33
1.049(1)
6.00e-11

37.08
1.719(0)
6.00e-11

38.09
1.311(0)
6.00e-11

40.51
1.211(1)
6.00e-11

45.69
1.098(2)
6.00e-11

43.98
1.962(1)
6.00e-11

D
127.7
1.392(3)
1

33.24
1.100(1)
1

39.59
1.596(1)
1

25.30
0.873(0)
8.66e-10

46.22
1.486(1)
4.95e-10

28.87
1.474(0)
1.50e-10

38.34
2.058(0)
1.50e-10

33.75
1.271(1)
1.37e-10

59.07
1.461(2)
1.37e-10

33.64
1.308(1)
1.37e-10

41.38
1.853(0)
6.00e-11

41.72
1.204(1)
6.00e-11

47.59
1.303(2)
6.00e-11

53.36
1.195(0)
6.00e-11

58.39
1.957(1)
6.00e-11

64.71
1.774(2)
6.00e-11

65.47
2.291(0)
6.00e-11

photo

2
0.015
0.000(3)
1

0.016
0.000(2)
0.1429

0.020
0.000(2)
0.1429

0.020
0.000(4)
0.1429

0.022
0.000(3)
0.1429

0.022
0.000(1)
0.1429

0.022
0.000(4)
0.1429

0.022
0.000(3)
0.1429

0.022
0.000(3)
0.1429

0.022
0.000(4)
0.1429

0.022
0.000(2)
0.1429

0.022
0.004(3)
0.1429

0.022
0.000(3)
0.1429

0.022
0.000(4)
0.1429

0.022
0.000(1)
0.1429

0.022
0.000(2)
0.1429

0.022
0.000(3)
0.1429

3
1.238
0.712(1)
1

1.228
0.745(0)
0.1429

1.343
0.290(3)
0.1429

2.855
0.795(2)
0.1429

2.529
0.828(0)
0.1429

1.526
0.772(1)
0.1429

1.539
0.660(1)
0.1429

1.573
0.675(1)
0.1429

1.911
0.786(1)
0.1429

1.540
0.776(0)
0.1429

1.541
0.541(1)
0.1429

1.545
0.100(4)
0.1429

1.643
0.824(1)
0.1429

1.533
0.733(0)
0.1429

1.626
0.805(1)
0.1429

1.685
0.771(0)
0.1429

1.606
0.789(1)
0.1429

D
1.840
0.824(0)
1

1.666
0.607(1)
0.1429

1.856
0.866(0)
0.1429

3.473
0.855(1)
0.1429

2.011
0.805(0)
0.1429

2.054
0.898(0)
0.1429

2.068
0.874(0)
0.1429

3.226
1.191(0)
0.1429

3.281
1.294(0)
0.1429

2.038
0.792(0)
0.1429

2.048
0.885(1)
0.1429

2.178
0.823(0)
0.1429

2.055
0.819(1)
0.1429

2.056
0.826(2)
0.1429

2.617
0.851(0)
0.1429

2.729
0.841(0)
0.1429

2.041
0.845(0)
0.1429

travel

2
0.186
0.000(3)
1

0.189
0.001(3)
1

0.203
0.000(3)
1

0.220
0.000(3)
1

0.234
0.001(2)
1

0.246
0.002(4)
1

0.271
0.001(2)
0.0278

0.284
0.001(4)
0.0139

0.298
0.001(1)
0.0139

0.319
0.002(3)
0.0042

0.419
0.001(3)
0.0037

0.422
0.001(2)
0.0025

0.458
0.001(3)
5.05e-4

0.564
0.001(2)
5.05e-4

0.493
0.002(2)
5.05e-4

0.576
0.001(3)
5.05e-4

0.516
0.005(4)
5.05e-4

3
12.72
1.688(0)
1

8.111
2.268(0)
1

8.142
1.720(0)
1

8.849
1.169(0)
1

12.58
1.668(2)
1

10.79
1.191(0)
1

14.31
1.151(1)
0.0167

14.90
1.408(1)
0.0083

17.06
0.944(2)
0.0083

17.73
1.544(0)
0.0042

28.80
1.498(0)
0.0025

34.17
1.217(1)
0.0015

37.61
1.391(0)
5.05e-4

40.87
1.240(1)
5.05e-4

42.59
1.814(1)
5.05e-4

45.33
0.735(2)
5.05e-4

60.81
1.003(2)
5.05e-4

D
225.7
2.232(0)
1

11.31
2.884(0)
1

15.74
0.869(2)
1

16.79
0.936(0)
1

23.48
1.017(2)
1

21.73
1.373(0)
1

32.47
1.950(0)
0.0056

29.31
1.750(2)
0.0028

39.40
1.348(1)
0.0028

34.25
1.197(1)
0.0028

60.11
1.755(0)
0.0012

64.85
1.961(1)
0.0010

69.79
1.441(1)
5.05e-4

71.61
2.037(1)
5.05e-4

71.81
2.169(0)
5.05e-4

73.26
2.252(0)
5.05e-4

83.74
2.150(0)
5.05e-4

Table 1: Query evaluation benchmarks
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