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Abstract—This paper explores the idea of knowledge-based
security policies, which are used to decide whether to answer
queries over secret data based on an estimation of the querier’s
(possibly increased) knowledge given the results. Limiting
knowledge is the goal of existing information release poli-
cies that employ mechanisms such as noising, anonymization,
and redaction. Knowledge-based policies are more general:
they increase flexibility by not fixing the means to restrict
information flow. We enforce a knowledge-based policy by
explicitly tracking a model of a querier’s belief about secret
data, represented as a probability distribution, and denying any
query that could increase knowledge above a given threshold.
We implement query analysis and belief tracking via abstract
interpretation using a novel probabilistic polyhedral domain,
whose design permits trading off precision with performance
while ensuring estimates of a querier’s knowledge are sound.
Experiments with our implementation show that several useful
queries can be handled efficiently, and performance scales
far better than would more standard implementations of
probabilistic computation based on sampling.

Keywords-privacy, abstract interpretation, probabilistic poly-
hedron, knowledge-based security

I. INTRODUCTION

Facebook, Twitter, Flickr, and other successful on-line ser-
vices enable users to easily foster and maintain relationships
by sharing information with friends and fans. These services
store users’ personal information and use it to customize the
user experience and to generate revenue. For example, Face-
book third-party applications are granted access to a user’s
“basic” data (which includes name, profile picture, gender,
networks, user ID, and list of friends [1]) to implement
services like birthday announcements and horoscopes, while
Facebook selects ads based on age, gender, and even sexual
preference [2]. Unfortunately, once personal information is
collected, users have limited control over how it is used.
For example, Facebook’s EULA grants Facebook a non-
exclusive license to any content a user posts [3]. MySpace,
another social network site, has recently begun to sell its
users’ data [4].

Some researchers have proposed that, to keep tighter
control over their data, users could use a storage server
(e.g., running on their home network) that handles personal
data requests, and only responds when a request is deemed
safe [5], [6]. The question is: which requests are safe? While
deferring to user-defined access control policies seems an
obvious approach, such policies are unnecessarily restrictive
when the goal is to maximize the customized personal

experience. To see why, consider two example applications:
a horoscope or “happy birthday” application that operates
on birth month and day, and a music recommendation
algorithm that considers birth year (age). Access control at
the granularity of the entire birth date could preclude both
of these applications, while choosing only to release birth
year or birth day precludes access to one application or the
other. But in fact the user may not care much about these
particular bits of information, but rather about what can be
deduced from them. For example, it has been reported that
zip code, birth date, and gender are sufficient information to
uniquely identify 63% of Americans in the 2000 U.S. census
[7]. So the user may be perfectly happy to reveal any one of
these bits of information in its entirety as long as a querier
gains no better than a 1/n chance to guess the entire group,
for some parameter n.

This paper explores the design and implementation for
enforcing what we call knowledge-based security policies. In
our model, a user U ’s agent responds to queries involving se-
cret data. For each querying principal Q, the agent maintains
a probability distribution over U ’s secret data, representing
Q’s belief of the data’s likely values. For example, to
mediate queries from a social networking site X , user U ’s
agent may model X’s otherwise uninformed knowledge of
U ’s birthday according to a likely demographic: the birth
month and day are uniformly distributed, while the birth
year is most likely between 1956 and 1992 [8]. Each querier
Q is also assigned a knowledge-based policy, expressed
as a set of thresholds, each applying to a different group
of (potentially overlapping) data. For example, U ’s policy
for X might be a threshold of 1/100 for the entire tuple
(birthdate, zipcode, gender), and 1/5 for just birth date. U ’s
agent refuses any queries that it determines could increase
Q’s ability to guess a secret above the assigned threshold. If
deemed safe, U ’s agent returns the query’s (exact) result and
updates Q’s modeled belief appropriately. (We touch upon
the risk of colluding queriers shortly.)

To implement our model, we need (1) an algorithm to
check whether answering a query could violate a knowledge-
based policy, (2) a method for revising a querier’s belief
according to the answer that is given, and (3) means to
implement (1) and (2) efficiently. We build on the work of
Clarkson et al. [9] (reviewed in Section III), which works out
the theoretical basis for (2). The main contributions of this
paper, therefore, in addition to the idea of knowledge-based



policies, are our solutions to problems (1) and (3).
Given a means to revise querier beliefs based on prior

answers, it seems obvious how to check that a query does
not reveal too much: U runs the query, tentatively revises
Q’s belief based on the result, and then responds with the
answer only if Q’s revised belief about the secrets does not
exceed the prescribed thresholds. Unfortunately, with this
approach the decision to deny depends on the actual secret,
so a rejection could leak information. We give an example
in the next section that shows how the entire secret could
be revealed. Therefore, we propose that a query should be
rejected if there exists any possible secret value that could
induce an output whereby the revised belief would exceed
the threshold. This idea is described in detail in Section IV.

To implement belief tracking and revision, our first
thought was to use languages for probabilistic computation
and conditioning, which provide the foundational elements
of the approach. Languages we know of—IBAL [10], Prob-
abilistic Scheme [11], and several other systems [12], [13],
[14]—are implemented using sampling. Unfortunately, we
found these implementations to be inadequate because they
either underestimate the querier’s knowledge when sampling
too little, or run too slowly when the state space is large.

Instead of using sampling, we have developed an imple-
mentation based on abstract interpretation. In Section V we
develop a novel abstract domain of probabilistic polyhedra,
which extends the standard convex polyhedron abstract
domain [15] with measures of probability. We represent
beliefs as a set of probabilistic polyhedra (as developed in
Section VI). While some prior work has explored probabilis-
tic abstract interpretation [16], this work does not support
belief revision, which is required to track how observation
of outputs affects a querier’s belief. Support for revision re-
quires that we maintain both under- and over-approximations
of the querier’s belief, whereas [16] deals only with over-
approximation. We have developed an implementation of
our approach based on Parma [17] and LattE [18], which
we present in Section VII along with some experimental
measurements of its performance. We find that while the
performance of Probabilistic Scheme degrades significantly
as the input space grows, our implementation scales much
better, and can be orders of magnitude faster.

Knowledge-based policies aim to ensure that an attacker’s
knowledge of a secret does not increase much when learning
the result of a query. Much prior work aims to enforce
similar properties by tracking information leakage quantita-
tively [19], [20], [21], [22], [23]. Our approach is more pre-
cise (but also more resource-intensive) because it maintains
an on-line model of adversary knowledge. An alternative to
knowledge-based privacy is differential privacy [24] (DP),
which requires that a query over a database of individu-
als’ records produces roughly the same answer whether a
particular individual’s data is in the database or not—the
possible knowledge of the querier, and the impact of the

query’s result on it, need not be directly considered. As such,
DP avoids the danger of mismodeling a querier’s knowledge
and as a result inappropriately releasing information. DP also
ensures a high degree of compositionality, which provides
some assurance against collusion. However, DP applies once
an individual has released his personal data to a trusted
third party’s database, a release we are motivated to avoid.
Moreover, applying DP to queries over an individual’s data,
rather than a population, introduces so much noise that the
results are often useless. We discuss these issues along with
other related work in Section VIII.

The next section presents a technical overview of the
rest of the paper, whose main results are contained in
Sections III–VII, with further discussion and ideas for future
work in Sections VIII and IX.

II. OVERVIEW

Knowledge-based policies and beliefs. User Bob would
like to enforce a knowledge-based policy on his data so that
advertisers do not learn too much about him. Suppose Bob
considers his birthday of September 27, 1980 to be relatively
private; variable bday stores the calendar day (a number
between 0 and 364, which for Bob would be 270) and byear
stores the birth year (which would be 1980). To bday he
assigns a knowledge threshold td = 0.2 stating that he does
not want an advertiser to have better than a 20% likelihood
of guessing his birth day. To the pair (bday , byear) he
assigns a threshold tdy = 0.05, meaning he does not want
an advertiser to be able to guess the combination of birth
day and year together with better than a 5% likelihood.

Bob runs an agent program to answer queries about
his data on his behalf. This agent models an estimated
belief of queriers as a probability distribution δ, which
is conceptually a map from secret states to positive real
numbers representing probabilities (in range [0, 1]). Bob’s
secret state is the pair (bday =270, byear =1980). The agent
represents a distribution as a set of probabilistic polyhedra.
For now, we can think of a probabilistic polyhedron as a
standard convex polyhedron C with a probability mass m,
where the probability of each integer point contained in C
is m/#(C), where #(C) is the number of integer points
contained in the polyhedron C. Shortly we present a more
involved representation.

Initially, the agent might model an advertiser X’s belief
using the following rectangular polyhedron C, where each
point contained in it is considered equally likely (m = 1):

C = 0 ≤ bday < 365, 1956 ≤ byear < 1993

Enforcing knowledge-based policies safely. Suppose X
wants to identify users whose birthday falls within the next
week, to promote a special offer. X sends Bob’s agent the
following program.



Example 1.

today := 260;
if bday ≥ today ∧ bday < (today + 7) then

output := True;

This program refers to Bob’s secret variable bday , and also
uses non-secret variables today , which represents the current
day and is here set to be 260, and output , which is set to
True if the user’s birthday is within the next seven days (we
assume output is initially False).

The agent must decide whether returning the result of run-
ning this program will potentially increase X’s knowledge
about Bob’s data above the prescribed threshold. We explain
how it makes this determination shortly, but for the present
we can see that answering the query is safe: the returned
output variable will be False which essentially teaches the
querier that Bob’s birthday is not within the next week,
which still leaves many possibilities. As such, the agent
revises his model of the querier’s belief to be the following
pair of rectangular polyhedra C1, C2, where again all points
in each are equally likely (m1 ≈ 0.726,m2 ≈ 0.274):

C1 = 0 ≤ bday < 260, 1956 ≤ byear < 1993
C2 = 267 ≤ bday < 365, 1956 ≤ byear < 1993

Ignoring byear , there are 358 possible values for bday and
each is equally likely. Thus the probability of any one is
1/358 ≈ 0.0028 ≤ td = 0.2.

Suppose the next day the same advertiser sends the same
program to Bob’s user agent, but with today set to 261.
Should the agent run the program? At first glance, doing so
seems OK. The program will return False, and the revised
belief will be the same as above but with constraint bday ≥
267 changed to bday ≥ 268, meaning there is still only a
1/357 = 0.0028 chance to guess bday .

But suppose Bob’s birth day was actually 267, rather than
270. The first query would have produced the same revised
belief as before, but since the second query would return
True (since bday = 267 < (261+7)), the querier can deduce
Bob’s birth day exactly: bday ≥ 267 (from the first query)
and bday < 268 (from the second query) together imply
that bday = 267! But the user agent is now stuck: it cannot
simply refuse to answer the query, because the querier knows
that with td = 0.2 (or indeed, any reasonable threshold) the
only good reason to refuse is when bday = 267. As such,
refusal essentially tells the querier the answer.

The lesson is that the decision to refuse a query must not
be based on the effect of running the query on the actual
secret, because then a refusal could leak information. In
Section IV we propose that an agent should reject a program
if there exists any possible secret that could cause a program
answer to increase querier knowledge above the threshold.
As such we would reject the second query regardless of
whether bday = 270 or bday = 267.

259

1956

1962

1972

1982

1992

0 267 ...
bday

by
ea

r

259

1956

1962

1972

1982

1992

0 267 ...
bday

by
ea

r

1991

1981

1971

1961

(a) output = False (b) output = True

Figure 1. Example 2: most precise revised beliefs

Full probabilistic polyhedra. Now suppose, having run
the first query and rejected the second, the user agent
receives the following program from X .

Example 2.

age := 2011− byear ;
if age = 20 ∨ ... ∨ age = 60 then

output := True;
pif 0.1 then output := True;

This program attempts to discover whether this year is a
“special” year for the given user, who thus deserves a special
offer. The program returns True if either the user’s age is
(or will be) an exact decade, or if the user wins the luck
of the draw (one chance in ten), as implemented by the
probabilistic if statement.

Running this program reveals nothing about bday ,
but does reveal something about byear . In particular, if
output = False then the querier knows that byear 6∈
{1991, 1981, 1971, 1961}, but all other years are equally
likely. We could represent this new knowledge, combined
with the knowledge gained from the first query, as shown
in Figure 1(a), where each shaded box is a polyhedron con-
taining equally likely points. On the other hand, if output =
True then either byear ∈ {1991, 1981, 1971, 1961} or the
user got lucky. We represent the querier’s knowledge in
this case as in Figure 1(b). Darker shading indicates higher
probability; thus, all years are still possible, though some
are much more likely than others. With the given threshold
of tdy = 0.05, the agent will permit the query; when
output = False, the likelihood of any point in the shaded re-
gion is 1/11814; when output = True, the points in the dark
bands are the most likely, with probability 5/13067. Since
both outcomes are possible with Bob’s byear = 1980, the
revised belief will depend on the result of the probabilistic
if statement.

This example illustrates a potential problem with the
simple representation of probabilistic polyhedra mentioned
earlier: when output = False we will jump from using two
probabilistic polyhedra to ten, and when output = True we
jump to using eighteen. Allowing the number of polyhedra
to grow without bound will result in performance problems.



To address this concern, we need a way to abstract our
belief representation to be more concise. Section V shows
how to represent a probabilistic polyhedron P as a seven-
tuple, (C, smin, smax,pmin,pmax,mmin,mmax) where smin

and smax are lower and upper bounds on the number of
points with non-zero probability in the polyhedron C (called
the support points of C); the quantities pmin and pmax

are lower and upper bounds on the probability mass per
support point; and mmin and mmax give bounds on the total
probability mass. Thus, polyhedra modeled using the simpler
representation (C,m) given earlier are equivalent to ones in
the more involved representation with mmax = mmin = m,
pmax = pmin = m/#(C), and smax = smin = #(C).

With this representation, we could choose to collapse
the sets of polyhedron given in Figure 1. For example, we
could represent Figure 1(a) with two probabilistic polyhe-
dra P1 and P2 containing polyhedra C1 and C2 defined
above, respectively, essentially drawing a box around the
two groupings of smaller boxes in the figure. The other
parameters for P1 would be as follows:

pmin
1 = pmax

1 = 9/135050
smin
1 = smax

1 = 8580
mmin

1 = mmax
1 = 7722/13505

Notice that smin
1 = smax

2 = 8580 < #(C1) = 9620,
illustrating that the “bounding box” of the polyhedron covers
more area than is strictly necessary. In this representation the
probabilities may not be normalized, which improves both
performance and precision. For this example, P2 happens
to have mmin

2 = mmax
2 = 14553/67525 so we can see

mmax
1 + mmax

2 = (53163/67525) 6= 1.
If we consider the representation of Figure 1(b) in a

similar manner, using the same two polyhedra C1 and C2,
the other parameters for C1 are as follows:

pmin
1 = 1/135050 pmax

1 = 10/135050
smin
1 = 9620 smax

1 = 9620
mmin

1 = 26/185 mmax
1 = 26/185

In this case smin
1 = smax

1 = #(C1), meaning that all covered
points are possible, but pmin

1 6= pmax
1 as some points are

more probable than others (i.e., those in the darker band).
The key property of probabilistic polyhedra, and a main

technical contribution of this paper, is that this abstraction
can be used to make sound security policy decisions. To
accept a query, we must check that, for all possible outputs,
the querier’s revised, normalized belief of any of the possible
secrets is below the threshold t. In checking whether the
revised beliefs in our example are acceptable, the agent will
try to find the maximum probability the querier could ascribe
to a state, for each possible output. In the case output =
True, the most probable points are those in the dark bands,
which each have probability mass 10/135050 = pmax

1 (the
dark bands in P2 have the same probability). To find the
maximum normalized probability of these points, we divide

Variables x ∈ Var
Integers n ∈ Z
Rationals q ∈ Q
Arith.ops aop ::= + | × | −
Rel .ops relop ::= ≤ | < | = | 6= | · · ·
Arith.exps E ::= x | n | E1 aop E2

Bool .exps B ::= E1 relop E2 |
B1 ∧ B2 | B1 ∨ B2 | ¬B

Statements S ::= skip | x := E |
if B then S1 else S2 |
pif q then S1 else S2 |
S1 ; S2 | while B do S

Figure 2. Core language syntax

by the minimum possible total mass, as given by the lower
bounds in our abstraction. In our example, this results in
pmax

1 /(mmin
1 +mmin

2 ) = (10/135050)/(26/185+49/925) ≈
0.0004 ≤ td = 0.05.

As just shown, the bound on minimum total mass is
needed in order to soundly normalize distributions in our
abstraction. The maintenance of such lower bounds on
probability mass is a key component of our abstraction that
is missing from prior work. Each of the components of a
probabilistic polyhedron play a role in producing the lower
bound on total mass. While smin

1 , smax
1 ,pmin

1 , and mmax
1 do

not play a role in making the final policy decision, their
existence allows us to more accurately update belief during
the query evaluation that precedes the final policy check.
The choice of the number of probabilistic polyhedra to use
impacts both precision and performance, so choosing the
right number is a challenge. For the examples given in this
section, our implementation can often answer queries in a
few seconds; details are in Sections V–VII.

III. TRACKING BELIEFS

This section reviews Clarkson et al.’s method of revising a
querier’s belief of the possible valuations of secret variables
based on the result of a query involving those variables [9].

A. Core language
The programming language we use for queries is given in

Figure 2. A computation is defined by a statement S whose
standard semantics can be viewed as a relation between
states: given an input state σ, running the program will
produce an output state σ′. States are maps from variables
to integers:

σ, τ ∈ State def= Var→ Z

Sometimes we consider states with domains restricted to
a subset of variables V , in which case we write σV ∈
StateV

def= V → Z. We may also project states to a set
of variables V :

σ � V
def= λx ∈ VarV . σ(x)



[[skip]]δ = δ
[[x := E ]]δ = δ [x→ E ]

[[if B then S1 else S2]]δ = [[S1]](δ|B) + [[S2]](δ|¬B)
[[pif q then S1 else S2]]δ = [[S1]](q · δ) + [[S2]]((1− q) · δ)

[[S1 ; S2]]δ = [[S2]]([[S1]]δ)
[[while B do S ]] = lfp [λf : Dist→ Dist. λδ.

f ([[S ]](δ|B)) + (δ|¬B)]

where

δ [x→ E ] def= λσ.
∑
τ | τ [x→[[E ]]τ ]=σ δ(τ)

δ1 + δ2
def= λσ. δ1(σ) + δ2(σ)

δ|B def= λσ. if [[B ]]σ then δ(σ) else 0
p · δ def= λσ. p · δ(σ)

Figure 3. Probabilistic semantics for the core language

The language is essentially standard. We limit the form
of expressions to support our abstract interpretation-based
semantics (Section V). The semantics of the statement form
pif q then S1 else S2 is non-deterministic: the result is that
of S1 with probability q, and S2 with probability 1− q.

B. Probabilistic semantics for tracking beliefs

To enforce a knowledge-based policy, a user agent must be
able to estimate what a querier could learn from the output
of his query. To do this, the agent keeps a distribution δ that
represents the querier’s belief of the likely valuations of the
user’s secrets. More precisely, a distribution is a map from
states to positive real numbers, interpreted as probabilities
(in range [0, 1]).

δ ∈ Dist def= State→ R+

We sometimes focus our attention on distributions over states
of a fixed set of variables V , in which case we write δV ∈
DistV to mean StateV → R+. Projecting distributions onto
a set of variables is as follows:1

δ � V
def= λσV ∈ StateV .

∑
σ′|(σ′�V=σV )

δ(σ′)

The mass of a distribution, written ‖δ‖ is the sum of the
probabilities ascribed to states,

∑
σ δ(σ). A normalized dis-

tribution is one such that ‖δ‖ = 1. A normalized distribution
can be constructed by scaling a distribution according to its
mass:

normal(δ) def=
1
‖δ‖
· δ

The support of a distribution is the set of states which have
non-zero probability: support(δ) def= {σ | δ(σ) > 0}.

The agent evaluates a query in light of the querier’s initial
belief using a probabilistic semantics. Figure 3 defines a
semantic function [[·]] whereby [[S ]]δ = δ′ indicates that,

1The notation
P
x|π ρ can be read ρ is the sum over all x such that

formula π is satisfied (where x is bound in ρ and π).

given an input distribution δ, the semantics of program S
is the output distribution δ′. The semantics is defined in
terms of operations on distributions, including assignment
δ [v → E] (used in the rule for v := E), conditioning δ|B
and addition δ1 + δ2 (used in the rule for if), and scaling
q · δ where q is a rational (used for pif). The semantics is
standard (cf. Clarkson et al. [9]).

C. Belief and security

Clarkson et al. [9] describe how a belief about possible
values of a secret, expressed as a probability distribution,
can be revised according to an experiment using the actual
secret. Such an experiment works as follows.

The values of the set of secret variables H are given by
the hidden state σH . The attacker’s initial belief as to the
possible values of σH is represented as a distribution δH .
A query is a program S that makes use of variables H and
possibly other, non-secret variables from a set L; the final
values of L, after running S, are made visible to the attacker.
Let σL be an arbitrary initial state of these variables such
that domain(σL) = L. Then we take the following steps:

Step 1. Evaluate S probabilistically using the attacker’s
belief about the secret to produce an output distribution δ′,
which amounts to the attacker’s prediction of the possible
output states. This is computed as δ′ = [[S]]δ, where δ, a
distribution over variables H]L, is defined as δ = δH× σ̇L.
Here, we make use of the distribution product operator and
point operator. That is, given δ1, δ2, which are distributions
over states having disjoint domains, the distribution product
is

δ1 × δ2
def= λ(σ1, σ2). δ1(σ1) · δ2(σ2)

where (σ1, σ2) is the “concatenation” of the two states,
which is itself a state and is well-defined because the two
states’ domains are disjoint. And, given a state σ, the point
distribution σ̇ is a distribution in which only σ is possible:

σ̇
def= λτ. if σ = τ then 1 else 0

Thus, the initial distribution δ is the attacker’s belief about
the secret variables combined with an arbitrary valuation of
the public variables.

Step 2. Using the actual secret σH , evaluate S “con-
cretely” to produce an output state σ̂L, in three steps. First,
we have δ̂′ = [[S]]δ̂, where δ̂ = σ̇H × σ̇L. Second, we have
σ̂ ∈ Γ(δ̂) where Γ is a sampling operator that produces a
state σ from the domain of a distribution δ with probability
δ(σ)/‖δ‖. Finally, we extract the attacker-visible output of
the sampled state by projecting away the high variables:
σ̂L = σ̂ � L.

Step 3. Revise the attacker’s initial belief δH according to
the observed output σ̂L, yielding a new belief δ̂H = δ′|σ̂L �
H . Here, δ′ is conditioned on the output σ̂L, which yields
a new distribution, and this distribution is then projected to



the variables H . The conditioning operation is defined as
follows:

δ|σV
def= λσ. if σ � V = σV then δ(σ) else 0

Note that this protocol assumes that S always terminates
and does not modify the secret state. The latter assumption
can be eliminated by essentially making a copy of the state
before running the program, while eliminating the former de-
pends on the observer’s ability to detect nontermination [9].

IV. ENFORCING KNOWLEDGE-BASED POLICIES

When presented with a query over a user’s data σH , the
user’s agent should only answer the query if doing so will
not reveal too much information. More precisely, given a
query S, the agent will return the public output σL resulting
from running S on σH if the agent deems that from this
output the querier cannot guess the secret state σH beyond
some level of doubt, identified by a threshold t. If this
threshold could be exceeded, then the agent declines to run
S. We call this security check knowledge threshold security.

Definition 3 (Knowledge Threshold Security). Let δ′ =
[[S]]δ, where δ is the model of the querier’s initial be-
lief. Then query S is threshold secure iff for all σL ∈
support(δ′ � L) and all σ′H ∈ StateH we have
(normal((δ′|σL) � H))(σ′H) ≤ t for some threshold t.

This definition can be related to the experiment protocol
defined in Section III-C. First, δ′ in the definition is the same
as δ′ computed in the first step of the protocol. Step 2 in the
protocol produces a concrete output σ̂L based on executing
S on the actual secret σH , and Step 3 revises the querier’s
belief based on this output. Definition 3 generalizes these
two steps: instead of considering a single concrete output
based on the actual secret it considers all possible concrete
outputs, as given by support(δ′ � L), and ensures that the
revised belief in each case for all possible secret states must
assign probability no greater than t.

This definition considers a threshold for the whole secret
state σH . As described in Section II we can also enforce
thresholds over portions of a secret state. In particular, a
threshold that applies only to variables V ⊆ H requires that
all σ′V ∈ StateV result in (normal(δ′|σL � V ))(σ′V ) ≤ t.

The two “foralls” in the definition are critical for ensuring
security. The reason was shown by the first example in
Section II: If we used the flawed approach of just running
the experiment protocol and checking if δ̂H(σH) > t
then rejection depends on the value of the secret state and
could reveal information about it. The more general policy
∀σL ∈ support(δ′ � L). (normal(δ′|σL � H))(σH) ≤ t,
would sidestep the problem in the example, but this policy
could still reveal information because it, too, depends on the
actual secret σH . Definition 3 avoids any inadvertent infor-
mation leakage because rejection is not based on the actual
secret: if there exists any secret such that a possible output

would reveal too much, the query is rejected. Definition 3
resembles, but is stronger than, min-entropy, as the security
decision is based on the most likely secret from the attacker’s
point of view [20]; further details are given in Section VIII.

V. BELIEF REVISION VIA ABSTRACT INTERPRETATION

Consider how we might implement belief tracking and
revision to enforce the threshold security property given in
Definition 3. A natural choice would be to evaluate queries
using a probabilistic programming language with support
for conditioning; examples are IBAL [10], Probabilistic
Scheme [11], and several others [12], [13], [14]. In these
languages, probabilistic evaluation is achieved by enumer-
ating inputs (sampling). Probabilities are associated with
each input and tracked during execution. As more inputs are
enumerated, a more complete view of the output distribution
emerges. Unfortunately, to get an accurate estimate of the
revised distribution following an output observation, one
must enumerate the entire input space, which could be
quite large. If insufficient coverage is achieved, then the
threshold check in Definition 3 could either be unsound or
excessively conservative, depending in which direction an
implementation errs.

To avoid sampling, we have developed a new means to
perform probabilistic computation based on abstract inter-
pretation. In this approach, execution time depends on the
complexity of the query rather than the size of the input
space. In the next two sections, we present two abstract
domains. This section presents the first, denoted P, where an
abstract element is a single probabilistic polyhedron, which
is a convex polyhedron [15] with information about the
probabilities of its points. Because using a single polyhedron
will accumulate imprecision after multiple queries, in our
implementation we actually use a different domain, denoted
Pn (P), for which an abstract element consists of a set of
at most n probabilistic polyhedra (whose construction is
inspired by powersets of polyhedra [25], [26]). This domain,
described in the next section, allows us to retain precision
at the cost of increased execution time. By adjusting n, the
user can trade off efficiency and precision.

A. Polyhedra

We first review convex polyhedra, a common technique
for representing sets of program states. We use the meta-
variables β, β1, β2, etc. to denote linear inequalities. We
write fv(β) to be the set of variables occurring in β;
we also extend this to sets, writing fv({β1, . . . , βn}) for
fv(β1) ∪ . . . ∪ fv(βn).

Definition 4. A convex polyhedron C = (B, V ) is a
set of linear inequalities B = {β1, . . . , βm}, interpreted
conjunctively, over dimensions V . We write C for the set
of all convex polyhedra. A polyhedron C represents a set of
states, denoted γC(C), as follows, where σ |= β indicates



that the state σ satisfies the inequality β.

γC((B, V )) def= {σ | domain(σ) = V , ∀β ∈ B. σ |= β}

Naturally we require that fv({β1, . . . , βn}) ⊆ V . We write
fv((B, V )) to denote the set of variables V of a polyhedron.

Given a state σ and an ordering on the variables in
domain(σ), we can view σ as a point in an N -dimensional
space, where N = |domain(σ)|. The set γC(C) can then
be viewed as the integer-valued lattice points in an N -
dimensional polyhedron. Due to this correspondence, we use
the words point and state interchangeably. We will some-
times write linear equalities x = f(~y) as an abbreviation for
the pair of inequalities x ≤ f(~y) and x ≥ f(~y).

Let C = (B, V ). Convex polyhedra support the following
operations.
• Polyhedron size, or #(C), is the number of integer points
in the polyhedron, i.e., |γC(C)|. We will always consider
bounded polyhedra when determining their size, ensuring
that #(C) is finite.
• Expression evaluation, 〈〈B〉〉C returns a convex polyhe-
dron containing at least the points in C that satisfy B .
• Expression count, C#B returns an upper bound on the
number of integer points in C that satisfy B . (It may be
more precise than #(〈〈B〉〉C).)
• Meet, C1 uC C2 is the convex polyhedron containing ex-
actly the set of points in the intersection of γC(C1), γC(C2).
• Join, C1 tC C2 is the smallest convex polyhedron
containing both γ(C1) and γ(C2).
• Comparison, C1 vC C2 is a partial order whereby
C1 vC C2 if and only if γ(C1) ⊆ γ(C2).
• Affine transform, C [x→ E ], where x ∈ fv(C), computes
an affine transformation of C. This scales the dimension
corresponding to x by the coefficient of x in E and shifts the
polyhedron. For example, ({x ≤ y, y = 2z}, V ) [y → z + y]
evaluates to ({x ≤ y − z, y − z = 2z}, V ).
• Forget, fx(C), projects away x. That is, fx(C) =
πfv(C)−{x}(C), where πV (C) is a polyhedron C ′ such that
γC(C ′) = {σ | σ′ ∈ γC(C) ∧ σ = σ′ � V }. So C ′ = fx(C)
implies x 6∈ fv(C ′).

We write isempty(C) iff γC(C) = ∅.

B. Probabilistic Polyhedra

We take this standard representation of sets of program
states and extend it to a representation for sets of distribu-
tions over program states. We define probabilistic polyhedra,
the core element of our abstract domain, as follows.

Definition 5. A probabilistic polyhedron P is a tuple
(C, smin, smax,pmin,pmax,mmin,mmax). We write P for the
set of probabilistic polyhedra. The quantities smin and smax

are lower and upper bounds on the number of support points
in the polyhedron C. The quantities pmin and pmax are lower
and upper bounds on the probability mass per support point.
The mmin and mmax components give bounds on the total

probability mass. Thus P represents the set of distributions
γP(P) defined below.

γP(P) def= {δ | support(δ) ⊆ γC(C) ∧
smin ≤ |support(δ)| ≤ smax ∧
mmin ≤ ‖δ‖ ≤ mmax∧
∀σ ∈ support(δ). pmin ≤ δ(σ) ≤ pmax}

We will write fv(P) def= fv(C) to denote the set of variables
used in the probabilistic polyhedron.

Note the set γP(P) is singleton exactly when smin =
smax = #(C) and pmin = pmax, and mmin = mmax. In such
a case γP(P) is the uniform distribution where each state in
γC(C) has probability pmin. Distributions represented by a
probabilistic polyhedron are not necessarily normalized (as
was true in Section III-B). In general, there is a relationship
between pmin, smin, and mmin, in that mmin ≥ pmin · smin

(and mmax ≤ pmax · smax), and the combination of the three
can yield more information than any two in isolation.

Our convention will be to use C1, smin
1 , smax

1 , etc. for the
components associated with probabilistic polyhedron P1 and
to use subscripts to name different probabilistic polyhedra.

Distributions are ordered point-wise [9]. That is, δ1 ≤ δ2
if and only if ∀σ. δ1(σ) ≤ δ2(σ). For our abstract domain,
we say that P1 vP P2 if and only if ∀δ1 ∈ γP(P1). ∃δ2 ∈
γP(P2). δ1 ≤ δ2. Testing P1 vP P2 mechanically is non-
trivial, but is unnecessary in our semantics. Rather, we
need to test whether a distribution represents only the zero
distribution 0Dist

def= λσ.0 in order to see that a fixed point for
evaluating 〈〈while B do S 〉〉P has been reached. Intuitively,
no further iterations of the loop need to be considered once
the probability mass flowing into the nth iteration is zero.
This condition can be detected as follows:

iszero(P)
def
=

smin = smax = 0 ∧mmin = 0 ≤ mmax

∨ mmin = mmax = 0 ∧ smin = 0 ≤ smax

∨ isempty(C) ∧ smin = 0 ≤ smax ∧mmin = 0 ≤ mmax

∨ pmin = pmax = 0 ∧ smin = 0 ≤ smax ∧mmin = 0 ≤ mmax

If iszero(P) holds, it is the case that γP(P) = {0Dist}. Note
that having a more conservative definition of this function
(which holds for fewer probabilistic polyhedra) would be
reasonable since it would simply mean our analysis would
terminate less often than it could, with no effect on security.
More details are given in our technical report [27].

In a standard abstract domain, termination of the fixed
point computation for loops is often ensured by use of a
widening operator. This allows abstract fixed points to be
computed in fewer iterations and also permits analysis of
loops that may not terminate. In our setting, non-termination
may reveal information about secret values. As such, we
would like to reject queries that may be non-terminating.

We enforce this by not introducing a widening operator.
Our abstract interpretation then has the property that it will



not terminate if a loop in the query may be non-terminating
(and, since it is an over-approximate analysis, it may also
fail to terminate even for some terminating computations).
We then reject all queries for which our analysis fails to
terminate. Loops do not play a major role in any of our
examples, and so this approach has proved sufficient so far.
We leave for future work the development of a widening
operator that soundly accounts for non-termination behavior.

Following standard abstract interpretation terminology, we
will refer to P (Dist) (sets of distributions) as the concrete
domain, P as the abstract domain, and γP : P → P (Dist)
as the concretization function for P.

C. Abstract Semantics for P
To support execution in the abstract domain just defined,

we need to provide abstract implementations of the basic
operations of assignment, conditioning, addition, and scaling
used in the concrete semantics given in Figure 3. We will
overload notation and use the same syntax for the abstract
operators as we did for the concrete operators.

As we present each operation, we will also state the
associated soundness theorem which shows that the abstract
operation is an over-approximation of the concrete operation.
Proofs are given in our technical report [27]. The abstract
program semantics is then exactly the semantics from Figure
3, but making use of the abstract operations defined here,
rather than the operations on distributions defined in Section
III-B. We will write 〈〈S〉〉P to denote the result of executing
S using the abstract semantics. The main soundness theorem
we obtain is the following.

Theorem 6. For all P, δ, if δ ∈ γP(P) and 〈〈S〉〉P termi-
nates, then [[S]]δ terminates and [[S]]δ ∈ γP(〈〈S〉〉P).

When we say [[S]]δ terminates (or 〈〈S〉〉P terminates)
we mean that only a finite number of loop unrollings are
required to interpret the statement on a particular distribution
(or probabilistic polyhedron). The precise definitions of
termination are given in the technical report [27].

We now present the abstract operations.
1) Forget: We first describe the abstract forget operator

fy(P1), which is used in implementing assignment. When we
forget variable y, we collapse any states that are equivalent
up to the value of y into a single state. To do this correctly,
we must find an upper bound hmax

y and a lower bound hmin
y

on the number of points that share the same value of other
dimensions x (this may be visualized of as the min and max
height of C1 in the y dimension). Once these are obtained,
we have that fy(P1) def= P2 where the following hold of P2.

C2 = fy(C1)

pmin
2 = pmin

1 ·max
{

hmin
y − (#(C1)− smin

1 ), 1
}

pmax
2 = pmax

1 ·min
{

hmax
y , smax

1

}
smin
2 = dsmin

1 /hmax
y e mmin

2 = mmin
1

smax
2 = min {#(fy(C1)), smax

1 } mmax
2 = mmax

1

Figure 4. Example of a forget operation in the abstract domain P. In this
case, hmin

y = 1 and hmax
y = 3. Note that hmax

y is precise while hmin
y is

an under-approximation. If smin
1 = smax

1 = 9 then we have smin
2 = 3,

smax
2 = 4, pmin

2 = pmin
1 · 1, pmax

2 = pmax
2 · 4.

Figure 4 gives an example of a forget operation and
illustrates the quantities hmax

y and hmin
y . If C1 = (B1, V1),

the upper bound hmax
y can be found by maximizing y − y′

subject to the constraints B1 ∪ B1[y′/y], where y′ is a
fresh variable and B1[y′/y] represents the set of constraints
obtained by substituting y′ for y in B1. As our points
are integer-valued, this is an integer linear programming
problem (and can be solved by ILP solvers). A less precise
upper bound can be found by simply taking the extent of
the polyhedron C1 along y, which is given by #(πy(C1)).

For the lower bound, it is always sound to use hmin
y =

1, which is what our implementation does. A more precise
estimate can be obtained by finding the vertex with minimal
height along dimension y. Call this distance u. Since the
shape is convex, all other points will have y height greater
than or equal to u. We then find the smallest number of
integer points that can be covered by a line segment of length
u. This is given by due−1. This value can be taken as hmin

y .
Since the forget operator is related to projection, we

state soundness in terms of the projection operation on
distributions. Note that fv(δ) def= domain(domain(δ)), i.e.,
the domain of states to which δ assigns probability mass.

Lemma 7. If δ ∈ γP(P) then δ � (fv(δ)−{y}) ∈ γP(fy(P)).

We can define an abstract version of projection using forget:

Definition 8. Let f{x1,x2,...,xn}(P) = f{x2,...,xn}(fx1(P)).
Then P � V ′ = f(domain(P)−V ′)(P).

That is, in order to project onto the set of variables V ′,
we forget all variables not in V ′.

2) Assignment: We have two cases for abstract assign-
ment. If x := E is invertible, the result of the assignment
P1 [x→ E] is the probabilistic polyhedron P2 such that
C2 = C1 [x→ E] and all other components are unchanged.

If the assignment is not invertible, then information about
the previous value of x is lost. In this case, we use the forget
operation to project onto the other variables and then add a
new constraint on x. Let P2 = fx(P1) where C2 = (B2, V2).



Then P1 [x→ E] is the probabilistic polyhedron P3 with
C3 = (B2 ∪ {x = E} , V2 ∪ {x}) and all other components
as in P2.

Lemma 9. If δ ∈ γP(P) then δ [v → E ] ∈ γP(P [v → E ]).

The soundness of assignment relies on the fact that
our language of expressions does not include division. An
invariant of our representation is that smax ≤ #(C). When
E contains only multiplication and addition the above rules
preserve this invariant; an E containing division would
violate it. Division would collapse multiple points to one
and so could be handled similarly to projection.

3) Plus: To soundly compute the effect of plus we need to
determine the minimum and maximum number of points in
the intersection that may be a support point for both P1 and
for P2. We refer to these counts as the pessimistic overlap
and optimistic overlap, respectively, and define them below.

Definition 10. Given two distributions δ1, δ2, we refer to
the set of states that are in the support of both δ1 and δ2 as
the overlap of δ1, δ2. The pessimistic overlap of P1 and P2,
denoted P1 / P2, is the cardinality of the smallest possible
overlap for any distributions δ1 ∈ γP(P1) and δ2 ∈ γP(P2).
The optimistic overlap P1 , P2 is the cardinality of
the largest possible overlap. Formally, we define these as
follows. n3

def= #(C1 uC C2), n1
def= #(C1) − n3, and

n2
def= #(C2)− n3. Then

P1 / P2
def= max

{
(smin

1 − n1) + (smin
2 − n2)− n3, 0

}
P1 , P2

def= min {smax
1 , smax

2 , n3}

We can now define abstract addition.

Definition 11. If not iszero(P1) and not iszero(P2)
then P1 + P2 is the probabilistic polyhedron P3 =
(C3, smin

3 , smax
3 ,pmin

3 ,pmax
3 ) defined as follows.

C3 = C1 tC C2

pmin
3 =

{
pmin

1 + pmin
2 if P1 / P2 = #(C3)

min
{

pmin
1 ,pmin

2

}
otherwise

pmax
3 =

{
pmax

1 + pmax
2 if P1 , P2 > 0

max {pmax
1 ,pmax

2 } otherwise

smin
3 = smin

1 + smin
2 − P1 , P2

smax
3 = smax

1 + smax
2 − P1 / P2

mmin
3 = mmin

1 + mmin
2 | mmax

3 = mmax
1 + mmax

2

If iszero(P1) then we define P1 + P2 as identical to P2; if
iszero(P2), the sum is defined as identical to P1.

Lemma 12. If δ1 ∈ γP(P1) and δ2 ∈ γP(P2) then δ1 + δ2 ∈
γP(P1 + P2).

4) Product: When evaluating the product P3 = P1 ×
P2, we assume that the domains of P1 and P2 are disjoint,
i.e., C1 and C2 refer to disjoint sets of variables. If C1 =

(B1, V1) and C2 = (B2, V2), then the polyhedron C1 ×
C2

def= (B1 ∪B2, V1 ∪ V2) is the Cartesian product of C1

and C2 and contains all those states σ for which σ � V1 ∈
γC(C1) and σ � V2 ∈ γC(C2). Determining the remaining
components is straightforward since P1 and P2 are disjoint.

C3 = C1 × C2

pmin
3 = pmin

1 · pmin
2 pmax

3 = pmax
1 · pmax

2

smin
3 = smin

1 · smin
2 smax

3 = smax
1 · smax

2

mmin
3 = mmin

1 ·mmin
2 mmax

3 = mmax
1 ·mmax

2

Lemma 13. For all P1, P2 such that fv(P1)∩ fv(P2) = ∅, if
δ1 ∈ γP(P1) and δ2 ∈ γP(P2) then δ1 × δ2 ∈ γP(P1 × P2).

In our examples we often find it useful to express uni-
formly distributed data directly, rather than encoding it using
pif. In particular, consider extending statements S to include
the statement form uniform x n1 n2 whose semantics is
to define variable x as having values uniformly distributed
between n1 and n2. Its semantics is as follows.

〈〈uniform x n1 n2〉〉P1 = fx(P1)× P2

Here, P2 has pmin
2 = pmax

2 = 1
n2−n1+1 , smin

2 =
smax
2 = n2 − n1 + 1, mmin

2 = mmax
2 = 1, and C2 =

({x ≥ n1, x ≤ n2} , {x}).
We will say that the abstract semantics correspond to the

concrete semantics of uniform defined similarly as follows.

[[uniform x n1 n2]]δ = (δ � fv(δ)− {x})× δ2

where δ2 = (λσ. if n1 ≤ σ(x) ≤ n2 then 1
n2−n1+1 else 0).

The soundness of the abstract semantics follows immedi-
ately from the soundness of forget and product.

5) Conditioning: Distribution conditioning for proba-
bilistic polyhedra serves the same role as meet in the classic
domain of polyhedra in that each is used to perform ab-
stract evaluation of a conditional expression in its respective
domain.

Definition 14. Consider the probabilistic polyhedron P1 and
Boolean expression B . Let n, n be such that n = C1#B and
n = C1#(¬B). The value n is an over-approximation of the
number of points in C1 that satisfy the condition B and n is
an over-approximation of the number of points in C1 that do
not satisfy B . Then P1 | B is the probabilistic polyhedron
P2 defined as follows.

pmin
2 = pmin

1 smin
2 = max

˘
smin
1 − n, 0

¯
pmax

2 = pmax
1 smax

2 = min {smax
1 , n}

mmin
2 = max

˘
pmin

2 · smin
2 , mmin

1 − pmax
1 ·min {smax

1 , n}
¯

mmax
2 = min

˘
pmax

2 · smax
2 , mmax

1 − pmin
1 ·max

˘
smin
1 − n, 0

¯¯
C2 = 〈〈B〉〉C1

The maximal and minimal probability per point are un-
changed, as conditioning simply retains points from the
original distribution. To compute the minimal number of



Figure 5. Example of distribution conditioning in the abstract domain P.

points in P2, we assume that as many points as possible from
C1 fall in the region satisfying ¬B . The maximal number
of points is obtained by assuming that a maximal number
of points fall within the region satisfying B .

The total mass calculations are more complicated. There
are two possible approaches to computing mmin

2 and mmax
2 .

The bound mmin
2 can never be less than pmin

2 · smin
2 , and

so we can always safely choose this as the value of mmin
2 .

Similarly, we can always choose pmax
2 · smax

2 as the value
of mmax

2 . However, if mmin
1 and mmax

1 give good bounds
on total mass (i.e., mmin

1 is much higher than pmin
1 · smin

1

and dually for mmax
1 ), then it can be advantageous to reason

starting from these bounds.
We can obtain a sound value for mmin

2 by considering
the case where a maximal amount of mass from C1 fails to
satisfy B. To do this, we compute n = C1#¬B , which
provides an over-approximation of the number of points
within C1 but outside the area satisfying B. We bound n
by smax

1 and then assign each of these points maximal mass
pmax

1 , and subtract this from mmin
1 , the previous lower bound

on total mass.
By similar reasoning, we can compute mmax

2 by assuming
a minimal amount of mass m is removed by conditioning,
and subtracting m from mmax

1 . This m is given by consider-
ing an under-approximation of the number of points falling
outside the area of overlap between C1 and B and assigning
each point minimal mass as given by pmin

1 . This m is given
by max

(
smin
1 − n, 0

)
.

Figure 5 demonstrates the components that affect the
conditioning operation. The figure depicts the integer-valued
points present in two polyhedra—one representing C1 and
the other representing B (shaded). As the set of points in C1

satisfying B is convex, this region is precisely represented by
〈〈B〉〉C1. By contrast, the set of points in C1 that satisfy ¬B
is not convex, and thus 〈〈¬B〉〉C1 is an over-approximation.
The icons beside the main image indicate which shapes
correspond to which components and the numbers within
the icons give the total count of points within those shapes.

Suppose the components of P1 are as follows.

smin
1 = 19 pmin

1 = 0.01 mmin
1 = 0.85

smax
1 = 20 pmax

1 = 0.05 mmax
1 = 0.9

Then n = 4 and n = 16. Note that we have set n to be the

number of points in the non-shaded region of Figure 5. This
is more precise than the count given by #(〈〈B〉〉C), which
would yield 18. This demonstrates why it is worthwhile to
have a separate operation for counting points satisfying a
boolean expression. These values of n and n give us the
following for the first four numeric components of P2.

smin
2 = max(19− 16, 0) = 3 pmin

2 = 0.01
smax
2 = min(20, 4) = 4 pmax

2 = 0.05

For the mmin
2 and mmax

2 , we have the following for the
method of calculation based on pmin/max

2 and smin/max
2 .

mmin
2 = 0.01 · 3 = 0.03 mmax

2 = 0.05 · 4 = 0.2

For the method of computation based on mmin/max
1 , we have

mmin
2 = 0.85− 0.05 · 16 = 0.05

mmax
2 = 0.9− 0.01 · (19− 4) = 0.75

In this case, the calculation based on subtracting from
total mass provides a tighter estimate for mmin

2 , while the
method based on multiplying pmax

2 and smax
2 is better for

mmax
2 .

Lemma 15. If δ ∈ γP(P) then δ|B ∈ γP(P | B).

6) Scalar Product: The scalar product is straightforward,
as it just scales the mass per point and total mass.

Definition 16. Given a scalar p in [0, 1], we write p ·P1 for
the probabilistic polyhedron P2 specified below.

smin
2 = smin

1 pmin
2 = p · pmin

1

smax
2 = smax

1 pmax
2 = p · pmax

1

mmin
2 = p ·mmin

1 C2 = C1

mmax
2 = p ·mmax

1

Lemma 17. If δ1 ∈ γP(P1) then p · δ1 ∈ γP(p · P1).

7) Normalization: If a probabilistic polyhedron P has
mmin = 1 and mmax = 1 then it represents a normal-
ized distribution. We define below an abstract counterpart
to distribution normalization, capable of transforming an
arbitrary probabilistic polyhedron into one containing only
normalized distributions.

Definition 18. Whenever mmin
1 > 0, we write normal(P1)

for the probabilistic polyhedron P2 specified below.

pmin
2 = pmin

1 /mmax
1 smin

2 = smin
1

pmax
2 = pmax

1 /mmin
1 smax

2 = smax
1

mmin
2 = mmax

2 = 1 C2 = C1

When mmin
1 = 0, we set pmax

2 = 1. Note that if P1 is the
zero distribution then normal(P1) is not defined.

Lemma 19. If δ1 ∈ γP(P1) and normal(δ1) is defined, then
normal(δ1) ∈ γP(normal(P1)).



D. Policy Evaluation

Here we show how to implement the threshold test given
as Definition 3 using probabilistic polyhedra. To make the
definition simpler, let us first introduce a bit of notation.

Notation 20. If P is a probabilistic polyhedron over vari-
ables V , and σ is a state over variables V ′ ⊆ V , then
P | σ def= P | B where B =

∧
x∈V ′ x = σ(x).

Definition 21. Given some probabilistic polyhedron P1 and
statement S where 〈〈S〉〉P1 terminates, let P2 = 〈〈S〉〉P1 and
P3 = P2 � L. If, for every σL ∈ γC(C3) with ¬iszero(P2 |
σL), we have P4 = normal((P2 | σL) � H) with pmax

4 ≤ t,
then we write tsecuret(S, P1).

The computation of P3 involves only abstract interpre-
tation and projection, which are computable using the op-
erations defined previously in this section. If we have a
small number of outputs (as for the binary outputs consid-
ered in our examples), we can enumerate them and check
¬iszero(P2 | σL) for each output σL. When this holds
(that is, the output is feasible), we compute P4, which again
simply involves the abstract operations defined previously.
The final threshold check is then performed by comparing
pmax

4 to the probability threshold t.
Now we state the main soundness theorem for abstract

interpretation using probabilistic polyhedra. This theorem
states that the abstract interpretation just described can be
used to soundly determine whether to accept a query.

Theorem 22. Let δ be an attacker’s initial belief. If δ ∈
γP(P1) and tsecuret(S, P1), then S is threshold secure for
threshold t when evaluated with initial belief δ.

VI. POWERSET OF PROBABILISTIC POLYHEDRA

This section presents the Pn (P) domain, an extension of
the P domain that abstractly represents a set of distributions
as at most n probabilistic polyhedra, elements of P.

Definition 23. A probabilistic (polyhedral) set ∆ is a
set of probabilistic polyhedra, or {Pi} with each Pi over
the same variables. We write Pn (P) for the domain of
probabilistic polyhedral powersets composed of no more
than n probabilistic polyhedra.

Each probabilistic polyhedron P is interpreted disjunc-
tively: it characterizes one of many possible distributions.
The probabilistic polyhedral set is interpreted additively. To
define this idea precisely, we first define a lifting of + to
sets of distributions. Let D1, D2 be two sets of distributions.
We then define addition as follows.

D1 +D2 = {δ1 + δ2 | δ1 ∈ D1 ∧ δ2 ∈ D2}

This operation is commutative and associative and thus we
can use

∑
for summations without ambiguity as to order

of operations. The concretization function for Pn (P) is then

defined as:

γPn(P)(∆) def=
∑
P∈∆

γP(P)

We can characterize the condition of ∆ containing only
the zero distribution, written iszero(∆), via the condition
that all of the member probabilistic polyhedra are zero.

iszero(∆) def=
∧
P∈∆

iszero(P)

A. Abstract Semantics for Pn (P)

With a few exceptions, the abstract implementations of
the basic operations for the powerset domain are extensions
of operations defined on the base probabilistic polyhedra
domain.

Theorem 24. For all δ, S,∆, if δ ∈ γPn(P)(∆) and
〈〈S〉〉∆ terminates, then [[S]]δ terminates and [[S]]δ ∈
γPn(P)(〈〈S〉〉∆).

Definition 25. The powerset simplification transforms a
set containing potentially more than n elements into one
containing no more than n, for n ≥ 1. The simplest approach
involves repeated use of abstract plus in the base domain P.

b{Pi}mi=1cn
def=
{

{Pi}mi=1 if m ≤ n
b{Pi}m−2

i=1 ∪ {Pm−1 + Pm}cn otherwise

Lemma 26. γPn(P)(∆) ⊆ γPn(P)(b∆cm) where m ≤ n.

Note that the order in which individual probabilistic
polyhedra are simplified has no effect on soundness but may
impact the precision of the resulting abstraction.

Many of the operations and lemmas for the powerset
domain are simple liftings of the corresponding operations
and lemmas for single probabilistic polyhedra. For these
operations (operations 1-5 given below), we simply list the
definition.

1) Forget: fy(∆) def= {fy(P) | P ∈ ∆}
2) Project: ∆ � V

def= {P � V | P ∈ ∆}
3) Conditioning: ∆ | B def= {P | B | P ∈ ∆}
4) Assignment: ∆ [x→ E] def= {P [x→ E] | P ∈ ∆}
5) Scalar product: p ·∆ def= {p · P | P ∈ ∆}
6) Product: The product operation is only required for

the special uniform statement and only applies to the product
of a probabilistic set with a single probabilistic polyhedron.
∆ × P ′

def= {P × P ′ | P ∈ ∆} (where we assume that
fv(∆) ∩ P ′ = ∅).

7) Plus: The abstract plus operation involves simplifying
the combined contributions from two sets into one bounded
set: ∆1 + ∆2

def= b∆1 ∪ ∆2cn, whenever ¬iszero(∆1) and
¬iszero(∆2). Alternatively, if iszero(∆1) (or iszero(∆2))
then ∆1 + ∆2 is defined to be identical to ∆2 (or ∆1).



8) Normalization: Since in the Pn (P) domain, the
over(under) approximation of the total mass is not contained
in any single probabilistic polyhedron, the normalization
must scale each component of a set by the overall total. The
minimum (maximum) mass of a probabilistic polyhedra set
∆ = {P1, . . . , Pn} is defined as follows.

Mmin(∆) def=
∑n
i=1 mmin

i Mmax(∆) def=
∑n
i=1 mmax

i

Definition 27. The scaling of a probabilistic polyhedra P1

by minimal total mass m and maximal total mass m, written
normal(P)(m,m) is the probabilistic polyhedron P2 defined
as follows whenever m > 0.

pmin
2 = pmin

1 /m smin
2 = smin

1

pmax
2 = pmax

1 /m smax
2 = smax

1

mmin
2 = mmin

1 /m C2 = C1

mmax
2 = mmax

1 /m

Whenever m = 0 the resulting P2 is defined as above but
with pmax

2 = 1 and mmax
2 = 1.

Normalizing a set of probabilistic polyhedra can be de-
fined as follows

normal(∆) def=
{

normal(P)(Mmin(∆),Mmax(∆)) | P ∈ ∆
}

B. Policy Evaluation

Determining the bound on the probability of any state
represented by a single probabilistic polyhedron is as simple
as checking the pmax value in the normalized version of
the probabilistic polyhedron. In the domain of probabilistic
polyhedron sets, however, the situation is more complex, as
polyhedra may overlap and thus a state’s probability could
involve multiple probabilistic polyhedra. A simple estimate
of the bound can be computed by abstractly adding all
the probabilistic polyhedra in the set, and using the pmax

value of the result. This is the approach we adopt in the
implementation.

Lemma 28. If δ ∈ γPn(P)(∆) and P1 =
∑
P∈∆ P then

maxσ δ(σ) ≤ pmax
1 .

Notation 29. If ∆ is a probabilistic polyhedron set over
variables V , and σ is a state over variables V ′ ⊆ V , then
∆ | σ def= ∆ | B where B =

∧
x∈V ′ x = σ(x).

Definition 30. Given some probabilistic polyhedron ∆1 and
statement S where 〈〈S〉〉∆1 terminates, let ∆2 = 〈〈S〉〉∆1

and ∆3 = ∆2 � L = {P ′i}. If for every σL ∈ γP(C)({C ′i})
with ¬iszero(∆2 | σL) we have ∆4 = normal((∆2 | σL) �
H) and P4 =

∑
P∈∆4

P such that pmax
4 ≤ t, then we write

tsecuret(S,∆1).

Below we state the main soundness theorem for abstract
interpretation using probabilistic polyhedron sets. This theo-
rem states that the abstract interpretation just described can
be used to soundly determine whether to accept a query.
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Figure 6. Query evaluation comparison

Theorem 31. Let δ be an attacker’s initial belief. If δ ∈
γPn(P)(∆) and tsecuret(S,∆), then S is threshold secure
for threshold t when evaluated with initial belief δ.

VII. IMPLEMENTATION AND EXPERIMENTS

We have implemented an interpreter for the core language
based on the probabilistic polyhedra powerset domain. The
base manipulations of polyhedra are done using the Parma
Polyhedra Library [17]. Size calculations are done using the
LattE lattice point counter [18]. LattE is also used for the
integer linear programming problem involved in the abstract
forget operation. The interpreter itself is written in OCaml.

We used our implementation to vet the query given
in Example 1 (Section II) and compared its performance
to an implementation based on Probabilistic Scheme [11],
which is capable of sound probability estimation after partial
enumeration.

Figure 6(a) illustrates the result when run on 2.5 GHz Intel



Core 2 Duo MacBook Pro, using OS X v10.5.8 with 4 GB
of RAM. Each × plots Probscheme’s maximum probability
value (the y axis)—that is, the probability it assigns to the
most likely secret state—when given a varying amount of
time for sampling (the x axis). We can see the precision
improves steadily until it reaches the exact value of 1/259
at around 30 seconds. Each + plots our implementation’s
maximum probability value when given an increasing num-
ber of probabilistic polyhedra; with a polyhedral bound of 2
(or more), we obtain the exact value in less than 3 seconds.
The advantage of our approach is more evident in Figure
6(b) where we use the same program but allow byear to
span 1910 to 2010 rather than 1956 to 1992. In this case
ProbScheme makes little progress even after a minute, and
eventually runs out of memory. Our approach, however, is
unaffected by this larger state space and produces the exact
maximum belief after around 3 seconds when using only 2
probabilistic polyhedra.

Figure 6(c) shows the result of our implementation as-
sessing the special query (Example 2) with initial belief
matching that following the first birthday query. Each plot-
ted point is the number of polyhedra allowed. The result
demonstrates that more complex queries, specifically ones
with many disjunctions in their conditionals, not only slow
our approach, but also reduce the precision of the maximum
probability value. The example requires 36 polyhedra for
exact calculations though as little as 3 produce probabilities
near exact. The precision worsens as the number of polyhe-
dra is increased until 36 are allowed. We conjecture this is
due to an overly simple means of deciding which polyhedra
to merge when performing abstract simplification; we plan
to investigate this issue in future work.

VIII. DISCUSSION AND RELATED WORK

Prior work aimed at controlling access to users’ private
data has focused on access control policies. For example,
Persona [6] users can store personal data on distributed
storage servers that use attribute-based encryption; only
those parties that have the attribute keys for particular data
items may see them. Our approach relaxes the access control
model to offer more fine-grained information release policies
by directly modeling an attacker’s belief.

Others have considered how an adversary’s knowledge
of private data might be informed by a program’s output.
Clark, Hunt, and Malacaria [28] define a static analysis
that bounds the secret information a straight-line program
can leak in terms of equivalence relations between the
inputs and outputs. Backes et al. [21] automate the syn-
thesis of such equivalence relations and quantify leakage
by computing the exact size of equivalence classes. Köpf
and Rybalchenko [22] extend this approach, improving its
scalability by using sampling to identify equivalence classes
and using under- and over-approximation to obtain bounds
on their size. Mu and Clark [29] present a similar analysis

that uses over-approximation only. In all cases, the inferred
equivalence classes can be used to compute entropy-based
metrics of information leakage.

We differ from this work in two main ways. First, we
implement a different security criterion. The most closely
related metric is vulnerability V as proposed by Smith [20],
which can be defined using our notation as follows:2

Definition 32. Let δ′ = [[S]]δ, where δ is the model of the
querier’s initial belief, and let δX

def= normal(δ � X). Then
query S is vulnerability threshold secure iff for

V =
∑

σL∈support(δ′L)

δ′L(σL) · max
σH∈StateH

(δ′|σL)H(σH)

we have V ≤ t for some threshold t.

The above definition is an expectation over all possible
outputs σL, so unlikely outputs have less influence. Our no-
tion of threshold security (Definition 3) is stronger because
it considers each output individually: if any output, however
unlikely, would increase knowledge beyond the threshold,
the query would be rejected. For example, recall the query
from Example 1 where the secret data bday is (assumed
by the querier to be) uniformly distributed; call this query
Q1. According to Definition 32, the minimum acceptable
threshold t ≥ V = 2/365 ≈ 0.005, whereas according to
Definition 3, the minimum threshold is t ≥ 1/7 ≈ 0.143
which corresponds the equivalence class 260 ≤ bday < 267.

The other main difference is that we keep an on-line
model of knowledge according to prior, actual query results,
which increases our precision. To see the benefit consider
performing query Q1 followed by a query Q2 which uses
the code from Example 1 but has today = 265. With our
system and bday = 270 the answer to Q1 is False and
with the revised belief the query Q2 will be accepted as
below threshold td = 0.2. If instead we had to model this
pair of queries statically they would be rejected because
(under the assumption of uniformity) the pair of outputs
True,True is possible and implies bday ∈ {265, 266} which
would require td ≥ 0.5. Our approach also inherits from
the belief-based approach the ability to model a querier
who is misinformed or incorrect, which can arise following
the result of a probabilistic query (more on this below) or
because of a change to the secret data between queries [9].
On the other hand, these advantages of our approach come
at the cost of maintaining on-line belief models.

Our proposed abstract domains P and Pn (P) are useful
beyond the application of belief-based threshold security;
e.g., they could be used to model uncertainty off-line (as
in the above work) rather than beliefs on-line, with the
advantage that they are not limited to uniform distributions
(as required by [21], [22]). Prior work on probabilistic
abstract interpretation is insufficient for this purpose. For

2Smith actually proposes min entropy, which is −log V .



example, Monniaux [30] gives an abstract interpretation
for probabilistic programs based on over-approximating
probabilities. That work contains no treatment of distribu-
tion conditioning and normalization, which are crucial for
belief-based information flow analysis. The use of under-
approximations, needed to soundly handle conditioning and
normalization, is unique to our approach.

McCamant and Ernst’s FLOWCHECK tool [19] measures
the information released by a particular execution. However,
it measures information release in terms of channel capacity,
rather than remaining uncertainty which is more appropriate
for our setting. For example, FLOWCHECK would report
a query that tries to guess a user’s birthday leaks one bit
regardless of whether the guess was successful, whereas
the belief-based model (and the other models mentioned
above) would consider a failing guess to convey very little
information (much less than a bit), and a successful guess
conveying quite a lot (much more than a bit).

To avoid reasoning directly about an adversary’s knowl-
edge, Dwork and colleagues proposed differential pri-
vacy [24]: a differentially private query over a database of
individuals’ records is a randomized function that produces
roughly the same answer whether a particular individual’s
data is in the database or not. Thus, if the database curator
is trustworthy, there is little reason for an individual to not
supply his data. However, we prefer users to control access
to their data as they like, rather than have to trust a curator.

In any case, it is difficult to see how to effectively adapt
differential privacy, which was conceived for queries over
many records, to queries over an individual’s record, as in
our setting. To see why, consider the birthday query from
Example 1. Bob’s birthday being/not being in the query
range influences the output of the query only by 1 (assuming
yes/no is 1/0). One could add an appropriate amount of
(Laplacian) noise to the query answer to hide what the true
answer was and make the query differentially private. How-
ever, this noise would be so large compared to the original
range {0, 1} that the query becomes essentially useless—
the user would be receiving a birthday announcement most
days.3 By contrast, our approach permits answering queries
exactly if the release of information is below the threshold.
Moreover, there is no limit on the number of queries as
long the information release remains bounded; differential
privacy, in general, must impose an artificial limit (termed
the privacy budget) because it does not reason about the
information released.

Nevertheless, differential privacy is appealing, and it
would be fruitful to consider how to apply its best attributes
to our setting. Rastogi and Suciu [23] propose a property
called adversarial privacy that suggests a way forward. Like
our approach, adversarial privacy is defined in terms of a

3By our calculations, with privacy parameter ε = 0.1 recommended
by Dwork [24], the probability the query returns the correct result is
approximately 0.5249.

change in attacker knowledge. Roughly: a query’s output
on any database may increase an attacker’s a priori belief
δ(σ) about any state σ by at most ε for all δ ∈ D for
some D ∈ P (Dist). Rastogi and Suciu show that, for a
certain class D, adversarial privacy and differential privacy
are equivalent, and by relaxing the choice of D one can
smoothly trade off utility for privacy. We can take the
reverse tack: by modeling a (larger) set of beliefs we can
favor privacy over utility. Our abstractions P and Pn (P)
already model sets of distributions, rather than a single
distribution, so it remains interesting future work to exploit
this representation toward increasing privacy.

Another important open question for our work is means
to handle collusion. Following our motivating example in
the Introduction, the user’s privacy would be thwarted if he
shared only his birth day with querier X and only his birth
year with Y but then X and Y shared their information.
A simple approach to preventing this would be to model
adversary knowledge globally, effectively assuming that all
queriers share their query results; doing so would prevent ei-
ther X’s or Y ’s query (whichever was last). This approach is
akin to having a global privacy budget in differential privacy
and, as there, obviously harms utility. Dealing with collusion
is more problematic when using probabilistic queries, e.g.,
Example 2. This is because highly improbable results make a
querier more uncertain, so combining querier knowledge can
misrepresent individual queriers’ beliefs. Roughly speaking,
querier X could perform a query Q that misinforms the
modeled global belief, but since querier Y ’s actual belief is
not changed by the result of Q (since he did not actually see
its result), he could submit Q′ and learn more than allowed
by the threshold. Disallowing probabilistic queries solves
this problem but harms expressiveness. Another option is to
more actively track a set of beliefs, as hinted at above.

IX. CONCLUSION

This paper has explored the idea of knowledge-based
security policies: given a query over some secret data, that
query should only be answered if doing so will not increase
the querier’s knowledge above a fixed threshold. We enforce
knowledge-based policies by explicitly tracking a model
of a querier’s belief about secret data, represented as a
probability distribution, and we deny any query that could
increase knowledge above the threshold. Our denial criterion
is independent of the actual secret, so denial does not
leak information. We implement query analysis and belief
tracking via abstract interpretation using novel domains
of probabilistic polyhedra and powersets of probabilistic
polyhedra. Compared to typical approaches to implementing
belief revision, our implementation using this domain is
more efficient and scales better.
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