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Abstract—Choosing a hard-to-guess secret is a prerequisite in
many security applications. Whether it is a password for user
authentication or a secret key for a cryptographic primitive,
picking it requires the user to trade-off usability costs with
resistance against an adversary: a simple password is easier
to remember but is also easier to guess; likewise, a shorter
cryptographic key may require fewer computational and storage
resources but it is also easier to attack. A fundamental question
is how one can optimally resolve this trade-off. A big challenge
is the fact that an adversary can also utilize the knowledge of
such usability vs. security trade-offs to strengthen its attack.

In this paper, we propose a game-theoretic framework for
analyzing the optimal trade-offs in the face of strategic adver-
saries. We consider two types of adversaries: those limited in
their number of tries, and those that are ruled by the cost
of making individual guesses. For each type, we derive the
mutually-optimal decisions as Nash Equilibria, the strategically
pessimistic decisions as maximin, and optimal commitments as
Strong Stackelberg Equilibria of the game. We establish that
when the adversaries are faced with a capped number of guesses,
the user’s optimal trade-off is a uniform randomization over a
subset of the secret domain. On the other hand, when the attacker
strategy is ruled by the cost of making individual guesses, Nash
Equilibria may completely fail to provide the user with any level
of security, signifying the crucial role of credible commitment for
such cases. We illustrate our results using numerical examples
based on real-world samples and discuss some policy implications
of our work.

Index Terms—Password Attacks; Attacker-Defender Games;
Usability-Security Trade-off; Game Theory; Decision Theory;
Maximin; Nash Equilibrium; Strong Stackelberg Equilibrium.

I. INTRODUCTION

Passwords remain the most common means of authen-
ticating humans to computer systems. Yet, passwords are
also among the most common points of failure of security
systems [1–3]. According to an investigation report in 2011
[4], stolen login credentials accounted for nearly a third of
corporate data breach incidents, out of which, more than a
quarter were estimated to be carried out using a form of
a guessing attack. Poorly chosen passwords undermine an
otherwise secure authentication system. Users tend to choose
easy to remember passwords [5, 6]. This is rationalizable as
attempts in balancing usability costs with perceived security.

Managing the utility vs. security trade-off is also a relevant
problem in the application of cryptographic techniques, which
usually rely on maintaining a key unknown to any adversary.

Longer keys provide stronger security guarantees but at the
same time inflict larger storage and computational costs on
the system. Using cryptographic techniques, therefore, entails
trading off utility for security, either through the choice of key
size or the method of key generation. Either way, the decision
must be made in the context of adversaries.

Guessing attacks are often categorized as online and offline
based on their context of execution [7]. Online attacks involve
interacting with the target system. In such an attack, adver-
saries are often limited in the number of (failed) guesses they
can make (within a certain time period) before the system
prevents any further interaction. In the case of password
authentication, this is usually an account lock-out that requires
intervention of the legitimate user using an alternate channel
of authentication (email, phone, etc.).

In offline attacks, adversaries are assumed to have collected
sufficient data to examine unlimited number of guesses, and
are only constrained by their computational resources. In the
case of password authentication, for example, this data can be
the leaked hashes of user passwords, enabling the attackers
to compute hashes of their guesses and compare them for a
match, theoretically an unlimited number of times. Another
example of an offline attack setting is when an adversary
eavesdrops a cryptographic response to a predictable challenge
in a challenge-response authentication protocol. Although un-
limited in the number of guesses, adversaries in such offline
scenarios still need to be wary of costs of trying guesses as
computation of password hashes or cryptographic responses
are not instantaneous or free (specially, noting that hash
functions for hashing passwords are intentionally chosen to
be slow on hardware to dissuade brute-force attacks). Hence,
the response of such adversaries is governed by the compu-
tational/time cost per each guess. An adversary may obtain
a pre-computed list of hashes to remove (or a rainbow table
to mitigate) the computational burden during the execution of
the attack. In such cases, the bottle-neck becomes the storage
requirement for such a table, which implies a cap on the
number of available guesses, similar to the online case.

We will collectively refer to passwords or cryptographic
keys as secrets. We also use the terms Capped-Guesses and
Costly-Guesses to respectively describe the following two
settings: (1) adversaries are limited in their number of guesses,
e.g. in online password attacks in the presence of a rate



limiting mechanism, or in offline attacks that use storage-
limited pre-computed tables; and (2) adversaries incur a cost
per each guess, e.g. in brute-force offline attacks. Regardless
of the type of the guessing attack, the inherent behavioral or
systematic preferences over the secret space can be exploited
by adversaries and boost their guessing efficiency. Therefore,
any secret picking policy that aims to achieve a desirable trade-
off between usability and security must evaluate the possible
reaction of a rational adversary given their capabilities. In
particular, it is insufficient to analyze the decisions of either
the users or the adversaries without taking into account the
reaction of the other. Game theory provides tools to analyze
such strategic interactions. The notion of equilibrium, in
particular, describes how rational parties would eventually
behave when faced against each other by characterizing their
mutually-optimal strategies.

The basic question at the heart of this paper is the following:
given a known uneven usability cost over the space of secrets,
how can the defender optimally randomize in picking a
secret? The main contribution of the paper is answering this
fundamental question. Specially:
• We present novel decision and game-theoretic models for

both Capped-Guesses and Costly-Guesses settings that are
simple enough to allow analysis yet general enough to cover
all the cases described above.

• We provide complete analysis of these games and discuss
the security implications of the solutions. Specifically, we
derive optimal secret selection policies with respect to differ-
ent strategic metrics, namely, the strategically pessimistic so-
lutions (Maximin), the mutual-best-response solutions (Nash
Equilibria – NE), and the optimal commitment strategies
(Strong Stackelberg Equilibria – SSE).

• For Capped-Guesses settings, we show that, interestingly,
the optimal picking strategies still constitute uniform distri-
butions despite the uneven preferences of the picker over
the secret space. The trade-off is achieved by randomizing
only over a (lower cost) subset of the secret space, while
the probability distribution over the subset is uniform. The
size of the subset is influenced by the picker’s trade-off
parameters and (only) the cap on the available guesses. The
optimal guessing strategies are restricted to the same subset
though they are not uniform. Instead, the guesser probes
the picker’s more favored secrets in that subset with higher
probabilities. We also show that for this scenario, all of the
different strategic metrics of Maximin, NE and SSE lead to
the same solution for the picker.

• For the Costly-Guesses settings, we find a surprising result,
reminiscent of the prisoner’s dilemma situation: aside from
trivial cases, the NE strategies of the picker fail to yield
any desirable security level, irrespective of the size of
the secret space or the cost associated with the loss of
the secret. We demonstrate how the picker can retrieve a
desirable usability-security trade-off using commitment to
optimal randomizations. We also notice that these optimal
commitment (SSE) strategies for this case are almost never
completely uniform, though they resemble uniform selec-

tion, with diminishing tails on costlier secrets.
• We provide numerical illustrations of our analyses using

examples such as the leaked RockYou password dataset and
cryptographic keys with increasing costs in their size.
The paper is structured as follows: Sec. II introduces the

building blocks of our non-zero-sum two-player game between
a picker and a guesser. In Sec. III, we present the model
for Capped-Guesses scenarios and introduce different game
theoretic notions of a solution, which we fully derive in
Sec. IV. In Sec.V and VI, we present the model and analysis
of the Costly-Guesses scenarios. In Sec. VII we comment on
some of the implications of our results. A brief overview of
related literature is discussed in Sec. VIII. A summary of our
results and some suggestions for future directions of research
concludes our paper in Sec. IX. Most of the technical proofs
in the paper are relegated to the appendices in our technical
report[8].

II. MODEL

In what follows, we progressively construct the model of
our non-zero-sum two-person games between the picker, and
the guesser. Critically, we assume that the parameters of the
games are “common knowledge”, i.e., both players are aware
of the presence and type of the game, the utilities and the
information available to each other.

The picker (she) chooses a secret from the finite set of all
secrets P = {p1, . . . , p|P|}. Let d ∈ P denote a pure (i.e.,
deterministic) action of the picker. P is thus the picker’s pure
action set. The picker has uneven preferences over this set
of secrets. In the case of password selection, for instance,
this preference could be related to the memorability and ease
of use: simpler passwords are easier to remember and less
cumbersome to type in. In the spirit of the von Neumann-
Morgenstern utility theorem [9], we model these preferences
by assigning different costs to different secrets.1 Specifically,
let the whole set of secrets be partitioned into disjoint non-
empty subsets E1, . . . , EN , i.e., Ei 6= ∅ for all i, Ei ∩ Ej = ∅
for i 6= j and ∪Ni=1Ei = P , such that the picker incurs
a usability cost of Ci if she picks any of the members of
the set Ei as her secret. Without loss of generality, assume
0 ≤ C1 < . . . < CN . Hence, in the absence of any other
considerations, the picker prefers to choose her secret from set
Ei rather than Ej when i < j, as she assigns a lower usability
cost to secrets from the first set. These data are determined,
for instance in the case of password choice, by statistical
investigation of the past databases of cracked passwords, e.g.,
as published in [10, 11]. Alternatively, these sets can represent
passwords that minimally satisfy an increasingly more complex
password creation rule-sets. For instance, E1 can be the set of
all dictionary words in lower case, E2 the set of all dictionary
words but requiring a mix of capital letters, E3 having the
additional rule of including a number as well, E4 requiring a

1Note, however, that we assume the usability costs and security costs of
the picker are additive through an appropriate scaling.
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Fig. 1. (Top) RockYou dataset password frequency and the derived cost
model. (Bottom) Fraction of passwords guessed as a function of number of
guesses.

symbolic character too, etc.2

The guesser (he) makes guesses about the choice of the
picker. Upon the discovery of the secret, i.e., a correct guess,
the guesser wins a gain of γ > 0, and the picker incurs
a loss of λ > 0. The guesses are either constrained in
number or subject to cost. We will investigate these two
cases separately in Sections III and V respectively. In what
follows, we provide two numerical instances of the model.
Note that these numerical examples are mainly for the purpose
of illustrating the analysis.

A. Cost Example: Passwords

The RockYou password dataset [12] contains the passwords
of around 32 million users of the RockYou gaming site. The
data-breach that produced the list was particularly costly as
the site did not bother hashing its users’ passwords. The list
is complete, containing both very common passwords (the
password “123456” occurs 290729 times), as well as many
unique ones (2459760 passwords appear only once). As a
result, the list has been studied extensively [2, 10, 13–15].
Fig. 1 (top) summarizes the frequency (dark line) of the
passwords in the whole dataset. The passwords in the figure
are ordered in decreasing frequency of appearance.

The dashed line in Fig. 1 (bottom) demonstrates the strength
of the passwords in the dataset using a simple metric quanti-
fying the likelihood of a successful brute-force attack against
a uniformly picked user in the dataset as a function of number
of guesses, assuming the attacker knew the exact distribution
of passwords in the dataset. As a frame of reference, we

2It is natural to assume that these partitions are common knowledge as sets
as opposed to lists. In particular, no specific indexing of the members of a
partition is common knowledge, and hence, the solutions must be symmetric
within the partitions. Nevertheless, we provide our analysis agnostic of
any assumption about existence of a common indexing inside partitions.
Symmetric solutions can then be extracted.
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Fig. 2. Synthetic cost model for selection of cryptographic keys, with cost
proportional to linear and cubic power of key length.

also include a similar metric assuming the users picked their
password uniformly from the 11884632 different passwords in
the dataset (solid dark line) or if all 32 million users picked
their passwords uniquely (solid light line).

As a candidate for the partitions, we group the passwords
based on their frequency of appearance as an indirect measure
of their cost. Namely, we group the passwords with the highest
frequency in E1, passwords with the second highest frequency
in E2, so on, which makes the last partition E2040 as the set of
all the passwords that appear only once. We use the inverse of
frequency of a password as a rough estimate of its usability
cost. After normalization, we set the usability costs to range
from C1 = 1/290729 to C2040 = 1. The cost associated with
each partition can be seen as the dotted line in Fig. 1 (top).

In Section IV-A and Section VI-B we will compare the
behavior of users in the dataset to that of their equilibrium
behavior for each of our two attack settings.

B. Cost Example: Cryptographic Keys

The selection of secret keys for cryptographic protocols is
usually out of the hands of humans, nevertheless, the design
decision of picking the strength of the key (usually a function
of its length) entails the same cost/risk trade-offs.

Fig. 2 summarizes the space of possible keys for two
hypothetical cryptographic constructs. In both we assume a
key can be anywhere between 0 and 64 bits. The examples
differ only in the costs associated with each key. A cost linear
in the length of key approximately models the trade-off in
symmetric key systems such as AES which uses a number of
rounds proportional to key length. The cubic relation is more
appropriate approximation of public/private schemes such as
naive implementations of RSA whose computation time scales
cubically with key length [16]. Note that in our analysis we
will assume that the length of the key is not known to a
guesser, something that is usually not true of public/private
schemes.

In Sections IV-B, VI-C, VI-E we examine the equilibrium
strategies of the picker and guesser given each of these two
cost models.

III. CAPPED-GUESSES

In the Capped-Guesses scenario, the guesser, without ob-
serving the action of the picker, chooses at most K elements
from the set of possible secrets P , as his guesses. We assume,



naturally, that K does not depend on the actual guesses chosen.
The pure action of the guesser, which we denote by A, is
hence a subset of P of size K, since it is in the guesser’s best
interest to use all K of his guesses. In the case of password
selection, for example, each action represents an instance of a
pre-computed table with which the guesser chooses to launch
a dictionary attack. The action set of the guesser is therefore:
A := {A|A ⊂ P, |A| = K}, the set of all possible pre-
computed tables of size K. The number K represents the
prowess of the guesser determined by the physical limitations
in place: for instance, in the case of pre-computed table attacks
on passwords, K is determined by how much memory each
hash entry occupies and how much total memory the attacker
has available for the table. Alternatively, in an online password
attack, it can be the number of tries he is allowed to make
before getting locked out. We assume K < |P| =

∑N
i=1 |Ei|,

since otherwise, the guesser trivially can find the secret with
certainty. A (pure) strategy profile here is simply a pair of
picker and guesser actions, (d,A) ∈ P ×A.

The problem is the following: determine best strategies for
the picker to choose her secret and the guesser to construct
his guessing dictionary, when both parties are rational decision
makers. The problem can be modeled as a simultaneous move
game. Note that in game-theory, the term “simultaneous move”
does not necessarily imply synchronicity, rather, the lack of
observation of the move of other players (or any signal about
it) before making a move. Otherwise, there is a sequentiality
in the occurrences of the actions taken in our problem: the
picker picks first. In our Capped-Guesses game, the “actions”
and “strategies” simply coincide. To complete the model, we
next provide the utilities of the players given a strategy profile
(d,A). Let uD and uA represent the utilities of the picker and
the guesser respectively. Compactly put, we have:

uD(d,A) = −c(d)− λ1A(d), uA(d,A) = γ1A(d) (1)

where 1 represents the indicator function,3 and c(d) :=∑N
i=1 Ci1Ei(d) is the usability cost of secret d. Note that this

summation only contains one non-zero element: if the picked
secret is from partition Ei, she incurs the usability cost of Ci.
A list of the main notations is provided in Table I.

Solution Concept 1 – Nash Equilibria (NE): A solution
of a game is a prediction of how rational players facing it
may take decisions. A commonly used notion of a solution
is Nash Equilibrium (NE in short), which informally put, is
a strategy profile that consists of simultaneously optimal re-
sponses to each other, keeping the others’ strategies fixed, i.e.,
strategy profiles that are resistant against unilateral deviations
of players. Formally, in our two player game, this means the
following: the strategy pair (d∗, A∗) ∈ P × A is a (pure)
NE if and only if: d∗ ∈ arg maxd∈P uD(d,A∗) and A∗ ∈
arg maxA∈A uA(d∗, A), in (1), i.e., uD(d∗, A∗) ≥ uD(d,A∗)
for all d ∈ P and uA(d∗, A∗) ≥ uA(d∗, A) for all A ∈ A.

3The indicator (characteristic) function of a subset Y of a set X is a
function 1Y : X → {0, 1} defined as the following: 1Y (x) = 1 if x ∈ Y ,
and 1Y (x) = 0 if x /∈ Y .

TABLE I
LIST OF MAIN NOTATIONS

Notation Definition
Ei Set of secrets with the same cost of picking Ci
P, N Set of all secrets, Number of its partitions
Ci Cost of picking a secret from set Ei, incurred by the

picker
K Number of attempts available to the guesser in

Capped-Guesses (size of his “table”)
σ Cost of each attempt of the guesser in Costly-Guesses
γ Gain earned by the guesser if any of his guesses is

correct
λ Loss incurred by the picker if the secret is found by

the guesser
c(d) Picker’s usability cost for picking secret d. Short for∑N

i=1 Ci1Ei (d).

It is not difficult to see that “pure” Nash Equilibrium is
not a suitable solution concept for our game. In fact, except
in trivial cases, no pure NE exists. This is because a pure
strategy of the picker means selection of a specific secret. The
best response of the guesser is then simply to include that
secret in his guess dictionary. But then, the picker would have
been better off to deviate and choose a different secret and not
incur the potentially huge cost of having her secret revealed
with certainty. In other words, deviation from any pure action
(except in trivial cases) is beneficial for the picker. A similar
argument can be made for the guesser.

The above discussion motivates the search for a solution
among mixed strategies, which involve randomization thereby
injecting ambiguity about the choice of each player. Specifi-
cally, a mixed strategy of a player is a probability distribution
over her set of pure strategies. For any finite nonempty set S,
let ∆(S) represent the set of all probability distributions over
it. That is:

∆(S) := {σ ∈ R+|S||
∑
s∈S

σ(s) = 1}

For a given probability distribution σ ∈ ∆(S), let the support
of σ, or supp(σ), denote the subset of the domain of σ that
receives a strictly positive probability, that is:

supp(σ) := {s ∈ S|σ(s) > 0}.

Moreover, for a given probability distribution σ ∈ ∆(S) and a
given subset S ′ ⊆ S, let σ(S ′) represent the probability mea-
sure of S ′ with respect to σ, that is, let σ(S ′) :=

∑
s∈S′ σ(s).

Let δ and α represent a mixed strategy of the picker
and guesser respectively. We hence have: δ ∈ ∆(P) and
α ∈ ∆(A). Following a common abuse of notation in game
theory, let uD(δ,α) and uA(δ,α) be the expected utility
of the two players given a mixed strategy profile (δ,α) ∈
∆(P)×∆(A) where the expectation is taken with respect to
the independent randomizations in the mixed strategies. That
is: uD(δ,α) :=

∑
d∈P,A∈A uD(d,A)δ(d)α(A), and likewise



for uA(δ,α). Replacing from (1), we have:

uD(δ,α)=−
∑
d∈P

c(d)δ(d)−λ
∑

d∈P,A∈A

1A(d)δ(d)α(A) (2a)

uA(δ,α) = γ
∑

d∈P,A∈A

1A(d)δ(d)α(A) (2b)

Note that we are assuming randomization per se is costless.
A mixed strategy of the guesser, α ∈ ∆(A), specifies the
probability that each feasible dictionary (table) is selected. For
our model, it is often simpler to instead specify the marginal
probabilities that each secret is tried by the guesser. Specifi-
cally, let us define ρ such that ρ(d) denotes the probability that
secret d is in the (K-sized) table of the guesser. ρ and α are
related through: ρ(d) =

∑
A∈A 1A(d)α(A). Moreover, using

the notion of probability measure and the fact that all members
of the same partition by definition have the same choosing cost
for the picker, we have:

∑
d∈P c(d)δ(d) =

∑N
i=1 Ciδ(Ei).

Hence, the expressions in (2) can be simplified as:

uD(δ,ρ) =−
N∑
i=1

Ciδ(Ei)− λ
∑
d∈P

δ(d)ρ(d),

uA(δ,ρ) =γ
∑
d∈P

δ(d)ρ(d)

(3)

A mixed NE is defined in the same way as a pure NE, except
that the optimization variables and the optimization spaces are
replaced accordingly. The set of pure NE are contained in the
set of mixed NE, since pure strategies can be obtained from
degenerate distributions over the strategies. That is, a mixed
strategy profile (δ∗,α∗) is a mixed NE iff:

uD(δ∗,α∗) ≥
∀δ∈∆P

uD(δ,α∗), uA(δ∗,α∗) ≥
∀α∈∆A

uA(δ∗,α).

Solution Concepts 2 & 3 – maximin and minimax: A
(mixed) strategy of the picker δmaximin ∈ ∆(P) is a maximin
strategy of hers if and only if:

δmaximin ∈ arg max
δ∈∆(P)

[ min
α∈∆(A)

uD(δ,α)]

Let uD(δ) := minα∈∆(A) uD(δ,α), which is the worst utility
of the picker among all reactions of the guesser if she chooses
the mixed strategy of δ. Then δmaximin maximizes uD(δ),
achieving the maximin utility, which we will denote by uDmax.
This is the mixed strategy that guarantees (secures) the picker
at least her maximin utility irrespective of the strategy of the
guesser. For this reason, maximin strategies are sometimes
also referred to as “security” strategies. maximin strategies are
recipe for action when a player is strategically pessimistic, in
that she believes the opponent(s) behave in such a way to hurt
her utility the most, as opposed to selfishly maximize their own
utilities. Hence, the focus is solely on the utility of that player,
and rationality of other players is not taken into account.

This is conceptually different from a minimax
strategy of a player. Formally, δminimax is
a picker’s minimax strategy if and only if:
δminimax ∈ arg minδ∈∆(P)[maxα∈∆(A) uA(δ,α)]. Let
uA(δ) := maxα∈∆(A) uA(δ,α), which is the best utility of

the guesser among all of his reactions if the picker chooses
the mixed strategy of δ. Then δminimax minimizes uA(δ),
guaranteeing that the utility of the guesser is bounded by
his minimax utility, denoted by uAmin. That is the strategy
that the picker can adopt to hurt the utility of the opponent
(the guesser) the most, ignoring her own utility. In zero-sum
games, the utility of each player is negative (i.e., additive
inverse) of the of other. Hence, hurting the expected pay-off
of the opponent the most is exactly equivalent to helping your
own expected pay-off the most. This means that minimax
and maximin strategies of each of the players coincide. But
this in general does not extend to non-zero-sum games.
This is exactly the situation in our game. It is easy to
see that the minimax strategy of the picker is simply to
uniformly randomize over the entire set of secrets, effectively
maximizing the ambiguity, minimizing any useful information
that the guesser can exploit. However, this completely ignores
the cost of choosing costly secrets. As we will show, the
maximin strategy of the picker is in general different from
uniform randomization over the entire set of secrets.

Likewise, we can speak of the maximin and minimax strate-
gies of the guesser: αmaximin ∈ ∆(A) is a maximin strategy of
the guesser if and only if: αmaximin ∈ arg maxα∈∆(A) uA(α)
where uA(α) := minδ∈∆(P) uA(δ,α). Here also the dis-
tinction between the maximin and minimax strategies can be
observed. Specifically, if the guesser is on the (pessimistic)
belief that the picker is trying to hurt his utility the most (or
equivalently plan according to the “worst case scenario” of the
strategy of the picker irrespective of her rationality), he should
select his K guesses uniformly randomly over the entire set
of secrets. This approach ignores the pay-off structure of the
picker and hence does not take advantage of the presence of
the preferences of the picker over the secrets. We will see how
the guesser can exploit this knowledge in Sec. IV.

Solution Concept 4 – Strong Stackelberg Equilibria
(SSE): Consider the situation in which the picker has the
power of credible commitment to a mixed strategy. Note
that this is in general different from commitment to a pure
strategy and requires a different “apparatus”. The relevant
solution concept for these cases is the Strong Stackelberg
Equilibria, which intuitively put, are the best mixed strategies
that the leader (picker in our case) can commit to, knowing
that the follower (guesser, here) will observe this commitment
and will respond selfishly optimally to it. In order for the
solution concept to exist, it also needs the extra assumption
that whenever the follower is indifferent between a set of best
responses, he will break ties in favor of the leader. This is
a benign assumption, because the leader can turn any of the
indifferent best responses of the follower to a strict preference
through an infinitesimal modification of her mixed strategy.
Note that a (pure) strategy of the follower is now a function
of the commitment distribution of the leader. That is, if the
follower is the guesser, a pure strategy of the follower is a
mapping from ∆(P) to A. Formally, (δ∗,αBR) in which
δ∗ ∈ ∆(P) and αBR : ∆(P) → ∆(A), constitutes a SSE



Game 1: Capped-Guesses

Players: PICKER, GUESSER
Strategy Sets: PICKER’S: {d ∈ P}

GUESSER’S: {A ⊂ P, |A| = K}
Utilities: PICKER: uD(d,A) = −c(d)− λ1A(d),

GUESSER: uA(d,A) = γ1A(d)

if and only if:4

1) δ∗ ∈ arg maxδ∈∆(P) uD(δ,αBR(δ))
2) αBR(δ) ∈ arg maxα∈∆(A) uA(δ,α)
3) αBR(δ) ∈ arg maxα′∈arg maxα∈∆(A) uA(δ,α) uD(δ,α′)

IV. ANALYSIS OF THE CAPPED-GUESSES SCENARIO

As our main result for the Capped-Guesses scenario, we
provide a sufficient condition for a strategy pair to be a mixed
NE (Prop. 1). We show that the NE and maximin strategies of
the picker coincide (Lemma 1). This useful property leads us
to other implication: all NE are interchangeable (Corollary 1)
and they all yield the same utility for the picker (Corollary 2).
Another implication of the lemma is that for this scenario,
the set of optimal mixed strategies of the picker to commit
to, i.e., her SSE strategies, are also the same as her NE
strategies, and moreover, they attain her the same utility as any
NE does (Corollary 3). Finally, we provide a mild constraint
under which the sufficient conditions provided in Prop. 1 for
a mixed strategy of the picker to be a NE are also necessary
conditions, implying uniqueness of the description of the NE
for almost all instances of the game (Corollary 6). These
results fully characterize the solution of the Capped-Guesses
game. The proofs of the results in this section can be found
in the Appendices of our accompanying technical report[8].

First, note that following Nash’s Theorem, our finite game
has at least one mixed NE. The existence of maximin, minimax
and SSE solutions also follow standard results in game theory
[17]. In order to explicitly describe the NE, we need to define
a few parameters. Let: L := min1≤l≤N l s.t.

∑l
i=1 |Ei| > K.

Note that in part this means: |∪mi=1Ei| ≤ K for any m < L
(recall that K is the dictionary size of the guesser – the
available number of guesses to the adversary). Now suppose
the picker chooses her secret according to a randomization
only from the first m (cheapest) partitions where m < L.
Then the guesser can correctly guess the secret with certainty,
because he can simply include the entire ∪mi=1Ei in his
guessing dictionary. Hence, for the picker, the (strictly) best
among such options that lead to certain loss of the secret is
simply picking from the cheapest partition which yield her a
utility of −C1 − λ.5 The picker can reduce the chance of a
correct guess by randomizing over partitions beyond ∪mi=1Ei,

4The superscript BR is chosen to stand for “best response”.
5In the language of game theory, any mixed strategy of the picker that only

randomizes over ∪mi=1Ei where m < L is strictly dominated by strategies
that only randomize over E1.

but then the picker has to balance usability costs with the gain
in increasing the entropy. Define:

J :=

{
L < j ≤ N | λK +

j−1∑
i=1

Ci|Ei| ≥ Cj
j−1∑
i=1

|Ei|

}
. (4)

That is, J characterizes the partitions for which the inequality
of λK/(

∑j−1
i=1 |Ei|)+(

∑j−1
i=1 Ci|Ei|)/(

∑j−1
i=1 |Ei|) ≥ Cj holds.

Since only j > L are considered, we have K < (
∑j−1
i=1 |Ei|).

In particular, suppose the picker uniformly randomizes over
unif(∪j−1

i=1Ei). Then, irrespective of the strategy of the guesser
as long as its support is unif(∪j−1

i=1Ei), his chance of finding the
secret is exactly K/(

∑j−1
i=1 |Ei|), and hence the security cost

of the picker is λK/(
∑j−1
i=1 |Ei|). Moreover, the usability cost

of the picker for uniformly randomizing over unif(∪j−1
i=1Ei) is

(
∑j−1
i=1 Ci|Ei|)/(

∑j−1
i=1 |Ei|). Therefore, the condition in the

definition of J translates to the following: j ∈ J if the
usability cost of choosing from Ej is less than the overall cost
(security and usability cost) of uniformly randomizing over
the (combined) first j − 1 (cheapest) partitions.6

If J 6= ∅, define J := maxJ . We label the cases where ei-
ther J = ∅ or C1 +λ ≤

(∑J
i=1 Ci|Ei|+ λK

)
/
(∑J

i=1 |Ei|
)

as “total defeat”, since in such cases the picker chooses
her secret from the cheapest partition, E1, knowing that her
choice will be guessed correctly, because it is not worthwhile
(or not possible) for her to try to prevent it. We will refer
to all other situations, i.e., when we have J 6= ∅ and
C1 + λ >

(∑J
i=1 Ci|Ei|+ λK

)
/
(∑J

i=1 |Ei|
)

as “ordinary”
cases, since, as we show, it is worthwhile for the picker to try
to avoid certain revelation of her secret.

Recall that ρ∗(p) =
∑
A∈Aα∗(A)1A(p) is just the prob-

ability that secret p will be among the K selections of the
guesser, given his mixed strategy of α∗. We now mathemati-
cally present the NE strategies and subsequently describe them
in words:

Proposition 1: For the “ordinary” cases in a Capped-
Guesses game, consider a strategy pair (δ∗,α∗) where:

δ∗ = unif(∪Ji=1Ei),

and:

ρ∗(p) =
K∑J

j=1 |Ej |
+Bi, ∀p ∈ Ei where i ≤ J (5a)

ρ∗(p) = 0, ∀p ∈ Ei where i > J (5b)

where Bi :=
[∑J

j=1Cj |Ej |−Ci
∑J
j=1|Ej |

]/[
λ
∑J
j=1|Ej |

]
.

Then, the strategy pair (δ∗,α∗) is a (mixed) NE. For the “total

6With simple algebra, the condition can be shown to be equivalent
to the following:

[
λK/(

∑j−1
i=1 |Ei|) + (

∑j−1
i=1 Ci|Ei|)/(

∑j−1
i=1 |Ei|)

]
≥[

λK/(
∑j
i=1 |Ei|) + (

∑j
i=1 Ci|Ei|)/(

∑j
i=1 |Ei|)

]
. In words, j ∈ J if the

overall cost of uniformly randomizing over the combined first j−1 partitions
is more than that of uniformly randomizing over the combined first j partitions
for the picker. This in turn implies that, for the picker, uniform randomization
over the first j−1 partitions is (weakly) dominated by uniformly randomizing
over the first j partitions.



defeat” cases, consider a strategy pair (δ∗,α∗) that satisfies
the following:

Picker: δ∗(E1) = 1 (6)

Guesser:

{
ρ∗(p) > 1− Ci−C1

λ ∀p ∈ Ei, i ≤ J,
ρ∗(p) = 0 ∀p ∈ Ei, i > J

(7)

Then (δ∗,α∗) constitutes a NE.
In words, for the “ordinary” cases, the proposed NE is

the following: the picker chooses her secret only from the
first J partitions, i.e., the J most favored partitions, and does
so uniformly randomly. Note in particular that the preference
profile of the picker only affects her NE strategy through the
number of partitions that constitute the domain of secrets to
choose from, but the randomization over this domain is always
uniform, despite the uneven preferences over them.

On the other hand, the guesser, knowing the picker does not
choose her secret with any positive probability from partitions
beyond EJ , does not include any guesses from them either
(5b). The guesser selects uniformly randomly within partitions
1, . . . , J but not across them. That is, even though the secrets
from the same partition are equally likely to be part of the
guessing dictionary of the guesser, the secrets from partition
i ≤ J are chosen with a bias equal to Bi away from uniform
guessing. This is despite the fact that the picker chooses her
secret uniformly randomly from the first J partitions. Indeed,
as we discuss in the proof, the guesser explores the relatively
favored partitions of the picker among the first J partitions
with a positive bias compared to her relatively less favored
partitions. Specifically, the bias is exactly such that the picker
is indifferent about choosing the secret from any of the first
J partitions.

For the cases of “total defeat”, the picker simply chooses
her secret from partition E1, the least costly partition, and the
guesser includes all of that partition into his dictionary, along
with other partitions such that the picker is forced into picking
her secret only from the cheapest partition. Thus, the secret
will be discovered by the guesser with probability one. Note
that, interestingly, the NE was not at all affected by γ, the
gain parameter of the guesser.

Our next series of results describe the properties of the NE
in regards to other strategic metrics. Note that establishing
these results do not rely directly on the explicit expression of
the NE in Prop. 1.

In general, playing NE strategies by by a player conjures the
assumption that the other player(s) are indeed rational, in that,
they are interested in maximizing their own utility as opposed
to antagonistically trying to minimize the utility of that player.
But what if this rationality assumption cannot be made in our
case regarding the guesser? Our next observation dispels that
concern by establishing that for the Capped-Guess scenarios,
NE strategies of the picker are her maximin strategies and vice
versa.

Lemma 1: Let ΩD
NE be the set of NE strategies of the picker

and ΩD
maximin be the set of her maximin strategies in a game

of Capped-Guesses. We have: ΩD
NE = ΩD

maximin.

The lemma establishes that the picker can randomize ac-
cording to her NE and (in expectation) be guaranteed at least
the expected utility prescribed by the NE, irrespective of
the mixed strategy of the guesser, be it a NE or not. From
a different viewpoint, the picker can act according to her
pessimistic maximin strategy, but be assured that she does not
lose anything in expectation by not playing a NE. Note that
this property only holds for the NE strategy of the picker and
not of the guesser (Recall that the maximin strategy of the
picker is choosing his K guesses uniformly randomly from
the entire secret space P).

Here, we just mention the gist of the proof.7The argu-
ment starts by noting from (2) that for any δ ∈ ∆(P),
α∗ ∈ arg maxα∈∆(A) uA(δ,α) if and only if: α∗ ∈
arg minα∈∆(A) uD(δ,α). To see this, note that the pay-off
of the picker is composed of two parts, the first part is
the expected cost of choosing the secret, and the second
part is the expected cost of losing it. For any given mixed
strategy of the picker, the guesser can only affect the second
part of the utility of the picker. Specifically, uD(δ,α) =
−(λ/γ)uA(δ,α) + φ(δ), where −(λ/γ) < 0 and φ(δ) is an
expression that does not depend on α. That is, the (rational)
best response of the guesser to any “given” strategy of the
picker, also yields the worst utility for the picker. Hence,
assuming a rational best response and strategically worst case
scenario become equivalent for the picker.

Next two results (corollaries of Lemma 1) establish the
interchangeability of the NE and remove the concern of
“Equilibrium Selection” in games of Capped-Guesses.

Corollary 1: Interchangeability of NE (I): If (δ∗1,α
∗

1)
and (δ∗2,α

∗
2) are both NE in a game of Capped-Guesses,

then so are (δ∗1,α
∗

2) and (δ∗2,α
∗

1).
This corollary shows that if at all there are more than one

distinct NE present, then no matter which NE strategy each
player chooses to play, the outcome is still a NE. The next
corollary further shows that, even if there were multiple NE,
there is no question of preference between them for the picker,
since her utility is the same in all of them:

Corollary 2: Interchangeability of NE (II): All NE in a
Capped-Guesses game yield the same utility for the picker.
Specifically, if (δ∗,α∗) is a NE of the Capped-Guesses game,
then: uD(δ∗,α∗) = uD

max.
These two results imply that, as far as the picker is con-

cerned, it suffices to to find “a” NE, as we did in Prop. (1),
which is in general easier that finding the set of all NE.
Although in our game, we will show that, almost in all cases,
the NE is in fact unique (Corollary 6). The next corollary states
that a NE strategy of the picker is also an optimum strategy
of her to commit to, and vice versa.

Corollary 3: In a Capped-Guesses game, let ΩD
SSE be the

set of picker’s SSE strategies. Then: ΩD
SSE = ΩD

NE.
As in Lemma 1, the corollary follows by showing that

given the committed strategy of the picker, the guesser will
try to maximize his own utility, which in our Capped-Guesses

7As a reminder, the detail of this, as well as all the other proofs in this
manuscript, are available in our technical report [8].



game, is exactly what he would do if he wanted to minimize
the utility of the picker. Hence the best mixed strategy to
commit to by the picker is exactly the strategy that maximizes
her minimum utility, i.e., her maximin strategy, which we
previously showed to match the NE strategies. Intuitively, this
is because in the Capped-Guesses model, the guesser will enter
the game irrespective of the randomization strategy of the
picker, and use all of his K attempts. Moreover, he chooses his
K guesses so as to maximize the chances of finding the secret,
which is exactly antagonistic to the utility of the picker given
the randomized strategy of the picker (refer to the discussion
after Lemma 1).

Note that the ability to commit to a mixed strategy is
guaranteed not to hurt the “committer” (leader), since the
leader can always commit to her Nash strategies and yield at
least her Nash utilities [18]. Or commit to a maximin strategy
and guarantee her maximin utility. But in general, she may be
able to do better and improve upon her Nash Equilibria. Even
in the presence of Corollary 3, due to the property that in SSE,
the follower breaks ties among his best responses in favor of
the leader, identical SSE and NE strategies of the picker may
lead to distinct utilities for her. However, the following lemma
establishes that for the game of Capped-Guesses, this is not
the case: the power to commit does not “buy” the picker any
extra benefit. Specifically, the utility of the picker when best-
committing is no better than her maximin utility.

Corollary 4: Let (δ∗,αBR) be a SSE of a Capped-Guesses
game. Then we have: uD(δ∗,αBR(δ∗)) = uD

max.
This result can also be expressed in the measure of the

“value of mixed commitment” as discussed in [19]: the value
of mixed commitment for the picker in Capped-Guesses
games is one, i.e., commitment achieves nothing above what
is achievable in NE, and hence there is no advantage in
commitment. As we will see in Section VI, this is drastically
different from the situation in Costly-Guesses scenarios.

Corollary 5: The NE strategies of the picker as described
in Prop. 1 are also maximin and SSE. Moreover, her utility in
all NE and SSE is her maximin utility, given as: uDmax =

−
[∑J

j=1 Cj |Ej |+ λK
]/[∑J

j=1 |Ej |
]

in “ordinary” cases,
and uDmax =−C1 − λ in “total defeat” cases.

The next corollary is rather less important in characteriza-
tion of this game in the light of Corollary 2. Nevertheless,
it also shows that not only the utilities, but in fact even the
equilibrium strategies themselves are almost always unique.
This removes the question whether there may be other simpler
to play NE of the game than presented in Prop. 1 (even though
the NE for the picker is quite simple as is). The answer is
no, almost never. Referring to the definition of J in (4), it
allows to have

(∑J−1
j=1 Cj |Ej |+ λK

)
= CJ

(∑J−1
j=1 |Ej |

)
.

We will refer to such a case as a degenerate case, which
is completely identifiable from the parameters of the prob-
lem. For all other (“non-degenerate”) cases, the condition(∑J−1

j=1 Cj |Ej |+ λK
)
≥ CJ

(∑J−1
j=1 |Ej |

)
is strictly satis-

fied.
Corollary 6: Aside from degenerate cases identified above,
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Fig. 3. (Top) Picker loss (solid) and corresponding key space size (dotted)
as a function of the number of available guesses to the adversary for different
values of loss (λ). (Bottom) Chance of a correct password guess as a function
of the number of guesses in RockYou dataset and for a range of loss (λ) values.

the sufficient conditions for a NE strategy profile provided in
Prop. 1 are also necessary.

Note that the corollary in part implies that for “non-
degenerate” “ordinary” cases, the NE is unique.

A. Equilibrium Example: Passwords

Fig. 3 summarizes the equilibrium behaviors of the picker
engaged in the Capped-Guesses game. The top part of the
figure shows picker loss (negative of the utility) as solid lines
and the size of the support set over which the picker chooses
his passwords, as the dotted lines. The bottom part of the figure
shows the probability that the password would be found by the
guesser. All of these are shown as functions of the number of
guesses available to the guesser and for two different values of
λ. Recall that the cost of picking passwords was normalized.
In this manner λ serves as the cost of security losses for having
the password guessed relative to the usability cost.

As the adversary is granted more guesses, the picker has to
include a larger subset of passwords to (uniformly) randomize
over. When this support set is exhausted or the additional cost
exceeds the benefits, the picker gives up and picks only the
cheapest password (“total defeat”). For high values of λ, the
picker never gives up, specifically, for large enough number
of the available guesses, the picker uniformly randomizes over
the entire set of passwords.

B. Equilibrium Example: Cryptographic Keys

Fig. 4 demonstrates the result of equilibrium key picking
and key guessing. The top part of the figure shows the loss
incurred by the picker in the two different cost models (linear
or cubic in key size) as a function of the number of available
guesses. The middle part of the figure focuses on the size of the
key space that the picker is forced to choose from. The bottom
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Fig. 4. Equilibrium in the Capped-Guesses model for key selection. (Top)
picker loss as a function of number of available guesses. (Middle) the
corresponding size of the support set. (Bottom) the resulting chance of picker
successfully finding the key. All with λ = 1000.

of the figure shows the resulting probability that the key will
be discovered using K brute-force guesses. For brevity we
only included in the graph the results for when λ = 1000.
Note that the differing cost models do not have much impact
in this scenario and are overshadowed by the magnitude of
the exponentially increasing key space that is available to the
picker.

For comparison purposes, the dashed line in the figure
represents the fixed picker behavior that chooses from among
only the 32 bit keys and incurring a linear cost of picking, 0.5.
The top of the figure shows that this strategy does worse in
terms of loss than one which responds to adversary’s power.

V. COSTLY-GUESSES

An alternative setting to a guesser with a limited number
of guesses is one with costly actions: consider a guesser that
incurs a cost of σ > 0 per each guess. To keep the model
and analysis simple, we assume that this cost is not guess-
dependent. In the case of passwords, for instance, this means
that computation of the hash of a guess is independent of the
guess itself, which largely holds for most hashing schemes.

A pure strategy of the picker and her pure strategy set are
the same as in the Capped-Guesses setting: the picker selects
a secret d from the set of all secrets P . The guesser’s strategy,
however, can no longer be simply modeled as a subset of
guesses to try, because here, the order of guesses matters: if
the secret is found, the guesser will stop the search and save
on the exploration cost. As before, the guesser is strictly better
off in expectation to avoid multiple tries of the same guess.
Intuitively, a pure strategy of the guesser, as his plan of action,
can be represented as a sequence of guesses without repetition,
i.e., a permutation of a subset of P . The interpretation of a
sample strategy A = 〈p1, . . . , pτ 〉 where pi ∈ P for 1 ≤ i ≤

τ ≤ |P|, will be the following: first try secret p1 as a guess, if
it is not correct, i.e., if the attempt fails, then try p2, if it fails
try p3, and so on up to pτ , if pτ fails, then quit the search.

For any set E , let Perm(E) represent the set of
all ordered arrangements (sequences without repetition)
of all the members of E , i.e., Perm(E) := {A =
〈a1, . . . , a|E|〉|{a1, . . . , a|E|} = E}. Moreover, let Ψ(E) be
the set of all permutations over the elements of the subsets
of E , i.e., Ψ(E) := {A|∃E ′ ⊆ E such that A ∈ Perm(E ′)}.
Using these notations, we can express the strategy space of
the guesser A as A = Ψ(P). Note that the empty sequence,
which we denote by 〈quit〉 for better presentation, is part of
the strategy space of the guesser as well, representing quitting
before making any guesses.

In the Appendix of the accompanied technical report[8],
we show how the specification of the strategy space of the
guesser in Costly-Guesses scenarios can be formally derived
from the standard game theory models of sequential games
with imperfect information. Specifically, it constitutes the set
of reduced pure strategies of a guesser with perfect recall (he
remembers his past guesses).

Given a (pure) strategy profile (d,A), we next compute
the utilities of the two players: uD(d,A) and uA(d,A). First,
some notations; we extend the notion of set memberships to
permutations as well, i.e., for a sequence A = 〈a1, . . . , aτ 〉,
d ∈ A if and only if d ∈ {a1, . . . , aτ}. Let 1A(d) be the
indicator function determining whether d appears on sequence
A, i.e., whether d ∈ A. Let posA(d) refer to the position of the
first appearance of d on sequence A if d ∈ A, and the length
of sequence A otherwise. For instance, pos〈a,b,c〉(b) = 2 and
pos〈a,b,c〉(e) = 3. Then we have (compare with (1)):

uD(d,A) = −c(d)− λ1A(d)

uA(d,A) = γ1A(d)− σposA(d)
(8)

As in the Capped-Guesses setting, pure strategies may not
be part of any solution concept, since a pure strategy for the
picker translates to unambiguously revealing her secret. Hence
we should be searching for solutions in the realm of mixed
strategies. As before, let δ and α denote a mix strategy of the
picker and guesser, where δ ∈ ∆(P) and α ∈ ∆(A), with the
only difference that A is now the set of sequences of distinct
guesses, i.e., A = Ψ(P). From (8), the expected utilities of
the players given a mixed strategy profile (δ,α) are:

uD(δ,α)=−
∑
d∈P

c(d)δ(d)− λ
∑
A∈A

1A(d)δ(d)α(A)

uA(δ,α)=γ
∑
d∈P

∑
A∈A

1A(d)δ(d)α(A)−σ
∑
d∈P

∑
A∈A

posA(d)δ(d)α(A)

For any A = 〈ai〉i, we have:
∑
d∈P 1A(d)δ(d) =

∑|A|
i=1 δ(ai).

Moreover:
∑
d∈P posA(d)δ(d) =

∑|A|
i=1 iδ(ai) + |A|(1 −∑|A|

i=1 δ(ai)). Hence:

uA(δ, A)=γ

|A|∑
i=1

δ(ai)−σ

 |A|∑
i=1

iδ(ai)+|A|(1−
|A|∑
i=1

δ(ai))

 (9)



Game 2: Costly-Guesses

Players: PICKER, GUESSER
Strategy Sets: PICKER’S: {d ∈ P}

GUESSER’S: {A|∃E ⊆ P such that A ∈ Perm(E)}
Utilities: PICKER: uD(d,A) = −c(d)− λ1A(d),

GUESSER: uA(d,A) = γ1A(d)− σposA(d)

An alternative method to derive the expression for uA(δ, A)

is the following:
∑|A|
i=1 δ(ai) is just the probability that any of

the tries on sequence A is the correct guess. Given δ and A,
the search reaches ai in A with probability 1 −

∑i−1
j=1 δ(aj).

Hence, the expected number of tries is
∑|A|
i=1(1−

∑i−1
j=1 δ(aj)).

Therefore:

uA(δ, A) = γ

|A|∑
i=1

δ(ai)− σ
|A|∑
i=1

1−
i−1∑
j=1

δ(aj)

 (10)

This is equivalent to the expression in (9). In our analysis, we
will use either one of the two forms based on convenience.

All of the solution concepts introduced in Section III can
be identically defined here as well. We will explore them in
detail in the next section.

VI. ANALYSIS OF THE COSTLY-GUESSES SCENARIO

Before we delve into the analysis of the Costly-Guesses
scenario, we present a simple yet instrumental lemma:

Lemma 2: Let E be a non-empty subset of P , and let unif(E)
represent the uniform distribution over E , i.e., δ = unif(E) if
and only if δ(p) = 1E(p)/|E|. Then, for any A ∈ Perm(E),
uA(unif(E), A) = γ−(|E|+1)σ/2, i.e., the expected utility of
the guesser for any strategy that exhausts E is γ−(|E|+1)σ/2.

Proof: The secret is a member of E , hence it will be found
with certainty, yielding the positive gain of γ. Each guess costs
the guesser σ. The number of guesses before (and including)
the correct one is i with probability 1/|E|. Hence the expected
number of tries is

∑|E|
i=1 i/|E| = (|E|+ 1)/2.

We will investigate the maximin and minimax strategies of
the picker first. The picker’s maximin strategy is choosing
a secret from the cheapest partition, i.e., a picking strategy
δ ∈ ∆(P) is maximin if and only if

∑
p∈E1 δ(p) = 1. To see

this, note that a strategy of the guesser that explores all of the
possible secrets, i.e., a permutation of the entire P , minimizes
the utility of the picker irrespective of the choice of her
strategy. Hence, facing this worst case strategy of the guesser,
the picker must only select from the cheapest partition.

A minimax strategy of the picker, on the other hand, is
uniform randomization over the entire P , due to the following
two intuitive lemmas:

Lemma 3: Let E be a non-empty subset of P . Then,
for any δ ∈ ∆(P) such that supp(δ) ⊆ E , we have:
supα∈∆(A) uA(δ,α) ≥ supα∈∆(A) uA(unif(E),α).

Lemma 4: Let E , E ′ be two non-empty subsets of P
such that |E| ≤ |E ′|. Then, supα∈∆(A) uA(unif(E),α) ≥
supα∈∆(A) uA(unif(E ′),α).

The first lemma simply confirms that uniform distribution
gives the least amount of useful information to the guesser. The
second lemma states that uniform randomization over a bigger
set is guaranteed not to help the guesser. Proof of Lemma 3
is in the technical report[8]. Lemma 4 follows directly from
Lemma 2.

As we can see, in the Costly-Guesses setting, the strategi-
cally pessimistic and the sheer antagonistic plans of action for
the picker (her maximin and maximin strategies, respectively)
lead to uninteresting extremes, suggesting that rationality
consideration of both players have a more decisive role. Next,
we turn our attention to NE solutions.

A. Costly-Guesses: Nash Equilibria

When γ < σ, the cost of trying even a single guess
exceeds the gain of finding the secret. Hence, irrespective of
the strategy of the picker, the guesser never enters the game:

Proposition 2: In a Costly-Guesses game, if γ < σ, then in
all NE (δ∗,α∗), we have: δ∗(E1) = 1 and α∗(〈quit〉) = 1,
i.e., the picker chooses from the cheapest partition and the
guesser does not make any attempt.

What happens when γ > σ? If γ < (1 +
∑M
i=1 |Ei|)σ/2

for some M ≤ N , then following Lemma 2, the picker can
dissuade the guesser from entering the game by uniformly
randomizing over the first M partitions. When the picker
assumes a high cost for losing her secret, i.e., for large values
of λ, this seems to be something she will opt for. However,
our next proposition reveals that, surprisingly, if there is no
partition that is big enough that uniform randomization over
it alone, i.e., single-handedly, can dissuade the guesser from
entering, then in all NE of the game, the picker chooses a
cheapest secret and loses it with certainty, and remarkably,
this is true irrespective of the magnitude of λ:

Proposition 3: In a Costly-Guesses game, if γ > (1 +
|Ei|)σ/2 for all i for which Ci < C1 + λ, then in all NE
(δ∗,α∗), we have: δ∗(E1) = 1 and uD(δ∗,α∗) = −C1 − λ,
i.e., the picker chooses only from the cheapest partition and
the guesser finds it with certainty.

The detailed proof of the proposition is provided in the
technical report[8]. Here we provide an informal summary
of the proof with the aim of giving an idea why we have
this “failure” of NE for the picker: in any NE, the mixed
strategies of the two players must be best responses to each
other. Therefore, in a NE, the picker only assigns positive
probability of selection from costlier partitions because of the
threat imposed by the exploration probabilities of the guesser.
Suppose there is a NE in which the picker assigns strictly
positive probabilities to secrets from partitions E1 to EM .
This means that the guesser explores E1 to EM with strictly
decreasing probabilities. This in turn implies that the guesser
must find it a best response to explore EM−1 and not EM
among his set of best responses that he randomizes over. Note
that the picker never assigns a strictly higher probability to



members from a costlier partition. This means that if exploring
EM−1 and not EM must be a best response of the guesser, so
must be exploring E1 through EM−1 and not EM . However,
this can never be the case: if the guesser explores all of the
partitions E1 to EM−1 and fails, then given the randomization
of the picker, he is now certain that the secret is in EM . Given
the condition γ > (EM + 1)σ/2, the guesser is strictly better
off to continue to explore EM as well. Hence, the starting
assumption about the NE strategy of the picker could not be
true.

The next proposition shows what may happen when the
condition of Prop. 3 is relaxed (proof is in the technical report):

Proposition 4: In a Costly-Guesses game where γ > σ, if
∃M = min{i|γ < (|Ei| + 1)σ/2, Ci ≤ C1 + λ}, then in all
NE (δ∗,α∗) we have: uD(δ∗,α∗) ≤ −CM .

This proposition does not quite redeem the stark situation
with NE solutions for the picker. For instance, consider a
case where the picker could prevent the guesser from entering
the game by randomizing over E1 and E2, and the cheapest
partition that is big enough to single-handedly prevent the
guesser from entering the game is E3. Then the picker has
to settle for a cost of C3, which can be much larger than
any weighted average of C1 and C2. Moreover, the propo-
sition only provides a (tight) upper-bound on the expected
utility of the picker among all NE. That is, −CM is the
expected utility of the picker in the best NE for her, and
worse NE for the picker can still exist. In particular, if
γ > (|E1| + 1)σ/2, then (δ∗,α∗) where δ∗ = unif(E1) and
α∗ = unif

(
Perm(E1),Perm(∪Ni=2Ei)

)
is also technically a

NE: given that the picker chooses uniformly from the cheapest
partition, it is a best response for the guesser to explore
the whole set of secrets starting from the cheapest partition;
likewise if the guesser’s strategy is to explore the whole set of
secrets, then the guesser’s best response is to choose from the
cheapest partition, since she will lose her secret anyway. This
NE, as in Prop. 3, yields for the picker the worst possible in
any NE: her maximin utility, that is −C1 − λ.

What causes the poor performance of the picker in NE is the
absence of a credible commitment to a deterring randomiza-
tion. Indeed the picker prefers to induce the guesser to abstain,
however, if the guesser is not going to enter the game, the
picker prefers to select a least costly secret. The picker can
remove this possibility from the reasoning of the guesser by
credibly communicating a commitment to a mixed strategy.
This is exactly the setup for Strong Stackelberg Equilibria,
which we analyze next.

B. Equilibrium Example: Passwords

Figure 5 shows the result of equilibrium behavior on the
loss of the picker in the costly guesses model for password
selection. Most of the figure is a lower bound on loss as
per Prop 2. For low ratios of γ/σ, the guesser does not
participate at all and results only in the cost of picking the
simplest password. For large enough ratios, the picker gives
up, incurring a loss of λ and the cost of the simplest password.
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Fig. 5. RockYou-based password picker loss in Nash equilibrium or lower
bound (gray) and in Stackelberg equilibrium (black dotted) as function of
γ/σ. For all, λ = 2.
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Fig. 6. Picker loss in the Nash (solid lines) and Stackelberg (dotted lines)
key picking strategy as a function of γ/σ, for linear and cubic cost functions
(lighter line is cubic cost). For all, λ = 2.

In the mid-range cases, the loss factor λ plays no role.

C. Equilibrium Example: Cryptographic Keys

The solid lines in Figure 6 show picker loss for the key
selection scenario with costly guesses. The results contain es-
sentially the same features as the password selection example:
low-enough ratios of γ/σ results in guesser not participating,
high enough ratios result in the picker giving up (this is out
of the frame at picker loss equal to λ = 2), and in between
the picker exhibits an increasing expected loss.

D. Costly-Guesses: Strong Stackelberg Equilibria

Here we assume the picker has access to an apparatus that
enables her to credibly communicate a commitment to a mixed
strategy to the guesser. We develop the optimal randomizations
for the picker given the fact that the guesser, observing
the committed randomization, best-reacts to it. Formally, we
derive the SSE strategies of the picker.

First, note that if γ < σ, then irrespective of the choice
of the picker, the guesser will never attempt a guess. Then
the SSE strategy of the picker for these cases is, trivially, a
choice from the cheapest partition, yielding the picker a utility
of −C1 and the guesser, zero. Therefore, in the rest of this
section, we only consider γ > σ. We show the following: if
at all worth protecting the secret, the picker should commit
to a randomization that makes not entering the game a best
response for the guesser, i.e., the cheapest randomization
that leaves the guesser indifferent between entering the game
and quitting at the beginning. In particular, committing to
randomizations that leave incentive for the guesser to perform



even a partial search is never optimal.8 We specifically develop
a linear optimization that gives the SSE strategy of the picker.

Proposition 5: Consider the following linear programming:

u∗D = max
νi

[
−

N∑
i=1

Ciνi

]
subject to :

νi≥0 for 1≤ i≤N,
N∑
i=1

νi = 1,
νi
|Ei|
≥ νi+1

|Ei+1|
for 1≤ i≤N − 1

γ

K∑
i=1

νi−σ
K∑
i=1

[
|Ei|(1−

i−1∑
j=1

νj)−
|Ei| − 1

2
νi

]
≤0 for 1≤K≤N

For (|P| + 1)σ/2 > γ, the LP is feasible. Let (ν∗1 , . . . , ν
∗
N )

be a solution. If u∗D > −C1 − λ, then a SSE strategy of the
picker is δ(p) = ν∗i /|Ei| for p ∈ Ei. If u∗D < −C1−λ, the SSE
strategy of the picker is to simply choose a secret from the
cheapest partition (which induces the guesser to enter, explore
that partition and find the secret with certainty). Same is true
when (|P|+ 1)σ/2 < γ.9

The proof of the proposition is provided in the technical
report.Note that when (|P|+ 1)σ/2 < γ, following Lemma 2,
even uniform randomization over the entire set of P does
not deter the guesser from entering the game and exploring
the whole secret space, as it yields him a strictly positive
utility of γ − (|P| + 1)σ/2. Since uniform randomization is
a minimax strategy of the picker (intuitively, it gives the least
useful information to the guesser), any other randomization
also results in a strictly positive utility for full exploration of
the guesser. This means the best strategy of the picker is then
choosing from a cheapest partition, since she will lose her
secret to the guesser anyway.

When (|P| + 1)σ/2 > γ, uniform randomization over a
subset of secrets can lead to a negative expected utility of
the guesser for entering the game and exploring any portion
of the secret space. However, our numerical examples of
the proposition reveal that the cheapest randomization that
achieves this goal is almost never completely uniform (or even
necessarily uniform over the union of some cheapest partitions
except for the costliest of them).

E. Stackelberg Examples

The difference between the Nash equilibrium and the
Stackelberg equilibrium is demonstrated in Figure 5 for the
password picking example and in Figure 6 for the key selection
example. In both, the picker’s loss in Stackelberg equilibrium
as a function of γ/σ is denoted by dotted lines. In the case
of key selection, linear and cubic cost models are shown with
linear as dark lines and cubic as light lines. The Stackelberg
strategies can be seen to perform better than the Nash strate-
gies shown as solid lines.

8This is reminiscent of this pithy quote [20] from Zhuge Liang, a recognized
ancient Chinese military strategist and statesman: “The wise win before they
fight, while the ignorant fight to win.”

9One can find uniqueness conditions for the SSE strategy of the picker,
using standard results in linear programming (e.g. [21]). However, the
uniqueness of the utility of the picker follows from the optimization itself.
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Fig. 7. The distribution of key sizes in the Stackelberg key picking strategy
for a variety of γ/σ values.

Figure 7 demonstrates the Stackelberg strategy for key
selection in more detail for three different γ/σ values. The
selection of key in these solutions is mostly uniform among
keys up to a certain length except for larger keys whose
probability sharply falls off. The range of key sizes which
are selected over increases with γ/σ.

VII. DISCUSSIONS

Policy implications of picker’s optimal strategies in
Capped-Guesses: System administrators usually use password
selection rules (composition policies) to increase the entropy
of the passwords selected by users. The choice of an optimal
rule-set has been a topic of research [10, 13, 14, 22]. Recall
that an interpretation of the partitions of the secret space
based on their usability costs was that these partitions can
be assumed to satisfy increasingly complex password compo-
sition rules. Hence, our Prop. 1 suggests that the search for
the “optimal” composition rule is amiss. The optimal secret
picking strategy is a uniform randomization over a “union”
of these partitions, and hence, no single composition rule is
optimal. Our result suggests that optimal composition rules
are generated by randomizing across different rule-set, and
specifically, each composition rule should be prompted to a
user with a probability that is proportional to the size of
password space created by that rule.

Credible commitment to a randomization Recall that in
a Capped-Guesses scenario, the SSE, NE and Maximin strate-
gies of the picker turn out to be identical. In particular, there is
no gain in communicating a commitment to the adversaries. In
the Costly-Guesses model, however, a credible commitment to
a randomization makes a substantial difference, and is critical
to prevent the failure of NE. Hence, in such situations, it is
not sufficient to have access to a randomization device, but
further, the randomization should be made public knowledge
and verifiable to become credible.

Optimal attacks in Capped-Guesses Our Prop. 1 suggest
that in a Capped-Guesses attack, e.g. using pre-computed
tables, even facing a rational defender that plays optimally and
hence uses uniform randomization, the adversary must choose
passwords randomly from the whole selection range of the
user, however, should choose simpler passwords with more
probability and include more difficult ones with increasingly
less probabilities.



Interpretation of mixed strategies The game theoretic so-
lutions that we developed involved randomization. Specifically,
in mixed NE, each player’s randomization leaves the other
indifferent across his/her randomization support. Although
these behaviors can be explicitly associated with deliberate
randomization or through the use of randomization devices
(e.g. when a random key generator algorithm is used), these are
not the only way such equilibria can be interpreted. Without
going to the details [23], we just mention some of the al-
ternative interpretations equilibrium solution involving mixed
strategies. Namely, the probabilities can represent (a) time av-
erages of player’s behavior that exploit an “adaptive” process,
(b) fractions of the total “population” of each player that adopt
pure strategies, (c) limits of pure strategy Bayesian equilibria
where each player is slightly uncertain about the payoffs of
the others, and (d) A “consistent” set of “beliefs” that each
player has about the other regarding their behavior.

Other applications: Finally, it is worth mentioning that
even though we motivated our models based on password
and cryptographic key selection, the generality of the model
allows it to be applicable to other contexts as well. As an
example of a completely different context but with identical
abstraction, consider a user that aims to send a convoy from
a source to a destination over a transport network, or transmit
a packet over a communication network. There are multiple
paths available and the user’s objective is to use this path
diversity to minimize the risk of being intercepted on a path by
an adversary. However, the paths may have different utilities as
some may provide lower delays and higher quality of service,
a preference that can be exploited by adversaries as well.

VIII. RELATED WORK

User password selection and attacks has been extensively
studied in the literature [2, 10, 13–15, 22], and due to its
practical significance, continues to be a hot area of research
[3]. These works generally aim at evaluating the efficacy of
password attacks as well as measuring the strength of different
password composition rules through statistical metrics. In
contrast to our work, these papers consider the user or the
adversaries one at a time, as opposed to considering that both
parties will adapts to each other’s choice of policies. Analysis
of such strategic actions and reactions can be done through a
game theoretic framework, which to our best of knowledge,
our work is the first in this context.

Game and decision theory has been applied in other cyber-
security contexts with promising potentials [24, 25]. The first
part of our work (Capped-Guesses) is, in its abstract form,
similar to the security game model analyzed in [26]. In their
model, the defender has limited resources to cover a wide
range of targets, while an adversary chooses a single target
to attack. If targets are thought of as secrets, the defender
in their model is akin to the guesser in our work, and their
adversary is our picker. Therefore, our Capped-Guesses model
is the “complement” of their model. Specifically, the results
that they develop for their defender will be translatable to our
guesser. However, the focus of our paper was on the picker.

Another line of research from theoretical game theory
is search theory and search games [27]. Existence of user
preferences over the secrets to pick from is missing from
such models. However, such preferences are at the heart of
usability-security trade-off settings investigated in our paper.

IX. CONCLUSION

We developed tractable game-theoretic models that cap-
ture the essence of secret picking vs guessing attacks in
the presence of preferences over the secret space. We then
provided a full analysis of our models with the aim of
investigating fundamental trends and properties in the design
of secret-picking policies that attain optimal trade-offs between
usability and security, taking into account the exploitation of
the knowledge of such trade-offs by an adversary. Notably,
we computed the secret picking policies that are optimal with
respect to a range of strategic metrics (Maximin, Minimax,
Nash Equilibria, Stackelberg Equilibria).

We distinguished between two classes of guessing attacks:
those in which the number of available guesses to an adversary
is capped (Capped-Guesses), and those in which an adversary
has potentially unlimited number of tries but incurs a cost per
each guess (Costly-Guesses). Our analysis revealed the crucial
role that such distinction between the nature of the guessing
adversary plays on the expected outcome. Specifically, we
showed that in the Capped-Guesses settings, the NE strategy
of the secret picker is still uniform but over a low-cost subset
of the secret space, where the size of the subset depends on
the parameters of the adversary only through the number of
available guesses. In contrast, we established that for Costly-
Guesses scenarios, except for trivial cases, NE fails to attain
a desirable outcome for the secret picker. For this setting, we
showed how deterrence of adversaries as her optimal strategy
crucially depend on existence of a credible commitment to a
randomization strategy. We illustrated our results through a
series of numerical examples using real-world data-sets.

Future Directions: One of the main areas of extending
this work is dealing with uncertainty in the parameters of the
players. For instance, the picker may not accurately know the
type of the guesser or their guessing size cap or their guessing
costs. One approach to formally take such uncertainties into
account is a Bayesian game approach, for which, this work
lays the foundation of.

Moreover, in this paper, we assumed that once the secret
is selected, the picker does not get to change it later, either
as a blind (open-loop) policy or as a reaction to some signal
generated by the actions of an adversary. Note that if the act of
changing the secret does not bring any cost to the picker, and
both parties are aware of secret-changing occasions, then our
results are still applicable, since in essence, the two players
play the same game after each reset. However, the previous
choices of the picker may affect her future utilities, and hence
the whole game. For instance, the act of changing the secret
may be costly for the picker, or changing the secret only
slightly may be associated with less cost than changing it
drastically. In such scenarios, a rational adversary can exploit



such preferences and carry some useful information from each
round of the game to boost his overall attack. Investigation
of such scenarios using dynamic game theory is a potential
extension of our work.

Another interesting scenario to investigate is when the
picker is choosing multiple secrets, where there is a increasing
loss for the number of secrets guessed correctly by an adver-
sary. The two extremes are (1) when the guesser wins if any
of the secrets are discovered, and (2) when the guesser wins
only if all of the secrets are discovered.
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